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ABSTRACT

We introduce an expressive framework and algorithms for the semi-

decentralized control of cooperative agents in environments with

communication uncertainty. Whereas semi-Markov control admits

a distribution over time for agent actions, semi-Markov commu-

nication, or what we refer to as semi-decentralization, gives a dis-

tribution over time for what actions and observations agents can

store in their histories. We extend semi-decentralization to the par-

tially observable Markov decision process (POMDP). The resulting

SDec-POMDP unifies decentralized and multiagent POMDPs and

several existing explicit communication mechanisms. We present

recursive small-step semi-decentralized A* (RS-SDA*), an exact al-

gorithm for generating optimal SDec-POMDP policies. RS-SDA*

is evaluated on semi-decentralized versions of several standard

benchmarks and a maritime medical evacuation scenario. This pa-

per provides a well-defined theoretical foundation for exploring

many classes of multiagent communication problems through the

lens of semi-decentralization.
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1 INTRODUCTION

Many complex real-world problems require the coordination of

multiple cooperative agents to solve, but feature limited opportuni-

ties for information exchange. The decentralized partially observ-

able Markov decision process (Dec-POMDP) formalizes multi-agent

planning and control in settings where explicit communication is

impossible [1, 4, 5]. Several model variants take advantage of exist-

ing, if limited information structures and extend the Dec-POMDP

to explicitly incorporate costly [10], delayed [20, 21], lossy [33], or

intermittent [34] communication.

In this paper we pursue a general framework that unifies several

multiagent communication mechanisms. We are especially inter-

ested in problems whose communication dynamics are conditioned

with some probability on the underlying state or taken actions.

An example domain is area-wide Global Positioning System (GPS)

denial via jamming [11]. As seen in the maritime medical evac-

uation scenario depicted in Figure 1, agents need to coordinate
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Figure 1: A semi-decentralized multiagent medical evacua-

tion scenario with probabilistic restrictions on communica-

tion. Aircraft and watercraft must coordinate under commu-

nication constraints to move patients from aid stations to

hospitals.

joint tasks in environments with degraded, denied, or disrupted

communication. Agents must reason about which actions to take

in light of available communication, the influence actions taken

have on future communication, and future communication’s influ-

ence on future actions. In decentralized systems, information may

be action-gated in costly communication, constrained by channel

capacity in lossy communication, temporally offset in intermittent

or delayed communication, and either deterministic or stochastic

in nature, while semi-decentralized systems generalize all of these

through probabilistic information flow.

We begin by formally defining the semi-decentralization property.

The key insight is that semi-Markov systems for resolving agent

control may be co-opted in semi-decentralized systems for

agent communication. Semi-decentralized systems may simulta-

neously contain a subset of agents that are necessarily decentralized

and a subset of agents that are permissibly centralized. We intro-

duce the semi-decentralized POMDP (SDec-POMDP), which unifies

several existing multiagent models and explicit communication

mechanisms. The SDec-POMDP reveals underlying mechanisms

for memory propagation, selector functions, which we toggle here

but are otherwise inherently present and constant in existing mod-

els. We then detail an exact optimal planning algorithm for solving

SDec-POMDPs and apply to a set of new semi-decentralized bench-

marks and a maritime medical evacuation application.

Contributions

• We formulate the semi-decentralization property by extend-

ing semi-Markov control concepts to communication. Semi-

decentralization is then applied tomultiagent POMDPs, form-

ing the SDec-POMDP.



• We prove that the SDec-POMDP unifies the Dec-POMDP,

the MPOMDP, 𝑘-steps delayed communication, and the Dec-

POMDP-COM.

• We introduce Recursive Small-Step Semi-Decentralized A*

(RS-SDA*), an exact algorithm for solving semi-decentralized

problems. We evaluate performance in semi-decentralized

variants of four Dec-POMDP benchmarks, then apply to a

complex medical evacuation scenario with joint tasks.

Ultimately, we describe and validate the mechanisms of a novel

yet foundational property and model for multiagent decision mak-

ing in probabilistic communication environments.

2 RELATEDWORK

Multiagent Models Centralized planning can occur when agents

freely communicate in reliable networks with no latency or when

individual agents possess full system observability. This allows a

single planner to select joint actions over the global state [22]. A par-

tially observable centralized multiagent system is represented by a

multiagent partially observableMarkov decision process (MPOMDP).

MPOMDP planners benefit from conditioning joint actions on joint-

observations but scale poorly and are susceptible to communica-

tion failures. MPOMDP therefore have limited application to many

challenging real-world problems. By contrast, cooperative agents

in decentralized systems can neither communicate explicitly nor

observe the entire system state, and therefore must select own

actions in accordance with local observations [15]. The decentral-

ized POMDP (Dec-POMDP) and MPOMDP share an underlying

model but possess distinct policies and histories. Decentralized

models have been used to support unmanned aerial vehicle for-

mation flight [3], maritime traffic management [30], and wildfire

surveillance [14]. Decentralized systems permit implicit commu-

nication, in which agents transmit information by means of taken

actions and received observations [12]. Explicit communication, by

contrast, endows agents with formalized communications actions.

The state of the art exact optimal algorithm for solving Dec-

POMDPs, recursive small-step multi-agent A* (RS-MAA*) [16], re-

lies on a combination of incremental expansion, clustering, variable-

depth recursive heuristics, and heuristic memoization. We extend

RS-MAA* to semi-decentralized systems.

Communication Schemes The literature features numerous ex-

plicitly modeled communication mechanisms and frameworks, ow-

ing to the sheer diversity of information structures in real-world

problems. Goldman and Zilberstein formalize the decentralized

POMDP with communication (Dec-POMDP-Com), which incor-

porates an alphabet of possible messages and a communication

cost function [9]. The Dec-POMDP-Com provides a basis for costly

communication and generally assumes noise-free instantaneous

broadcasting. Delayed communication occurs when agents learn

the local observation received by others after one or more time

steps [22]. In one-step delayed communication, agents determine

the latest joint action from the joint policy, but are unaware of the

latest joint-observation [20]. In 𝑘-steps delayed communication, a

sufficient statistic may be used in place of the past joint policy [21].

Other multiagent models consider noisy [33] or intermittent [34]

communication channels.

In the costly, delayed, noisy, and intermittent communication

cases, the domain environment is orthogonal to the communication

channel, and the actions taken by agents and resulting state do not

affect their future ability to coordinate. Therefore, while communi-

cation directly influences control, control does not in turn directly

influence communication. This distinguishes semi-decentralized

infrastructure from existing communication schemes.

Communication in Reinforcement Learning Our primary con-

tribution is a foundational model that supports both planning and

reinforcement learning in restricted communication environments.

We further present an exact algorithm for semi-decentralized plan-

ning, in which the communication and model dynamics are known

prior to execution [17]. Still, the growing body of multiagent deep

reinforcement learning with communication (Comm-MADRL) re-

search is replete with promising techniques for codifying commu-

nication and defining communication policy. Zhu et al. categorize

Comm-MADRL approaches by communication policy, to include

full communication, partial communication, individual control, and

global control subcategories [35]. We are chiefly concerned with

the individual control literature [13], [29], [28], and seek to learn

optimal control policies in light of potential communication links

between agents. In the sub-field of learning tasks with communica-

tion, policies generated using learning algorithms simultaneously

maximize environmental rewards and determine effective commu-

nication protocols for agents [35]. This parallels recent efforts in

planning to design joint communication and control strategies [31],

which we also do.

3 PRELIMINARIES

3.1 Dec-POMDPs

The decentralized partially observable Markov decision process (Dec-

POMDP) is a stochastic, decentralized multiagent model for sequen-

tial decision-making under partial observability characterized by

tuple ⟨𝐼 , 𝑆, 𝐴, ¯O,𝑇 ,𝑂, 𝑅, ⟩, where:
• 𝐼 is a finite set of 𝑘 agents,

• 𝑆 is a finite set of states,

• 𝐴 = ×𝑖𝐴𝑖 is a finite set of joint actions,

• ¯O = ×𝑖O𝑖 is a finite set of joint-observations, and
• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is a state transition function where

𝑇 (𝑠′ | 𝑠, 𝑎) is the probability of being in state 𝑠′ given joint

action 𝑎 being performed in state 𝑠 ,

• 𝑂 :
¯O × 𝑆 ×𝐴 is a joint-observation function where 𝑂 (𝑜′ |

𝑠′, 𝑎) specifies the probability of attaining joint-observation

𝑜′ when joint action 𝑎 results in state 𝑠′, and
• 𝑅 : 𝑆 ×𝐴 → R is a reward function such that 𝑅(𝑠, 𝑎) is the
immediate reward for performing joint action 𝑎 in state 𝑠 .

Agents in the decentralized partially observable Markov decision

process (Dec-POMDP) cannot explicitly share information. Each

agent therefore select actions in accordance with a local policy 𝜋𝑖
informed by action observation historyℎ𝑖 , where ¯ℎ ∈ (∏𝑖∈𝐼 𝐴𝑖𝑂𝑖 )★.
We are primarily concerned with deterministic policies, from which

agent actions can be inferred using only observation histories 𝑜ℎ .

The collection of individual policies is the decentralized policy set

𝜋 : ⟨𝜋1, 𝜋2, ...𝜋𝑛⟩. Assume an infinite horizon ℎ = ∞ and time

discount rate 𝛾 . The objective is to find a policy set 𝜋 maximizing

expected reward over states and observation histories:



𝑉 𝜋 (𝑠, 𝑜ℎ) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑜𝑡
ℎ
)) | 𝑏0, 𝜋

]

𝜋∗← argmax

𝑎∈𝐴

(
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ |𝑠, 𝑎)𝑉 ∗ (𝑠′, 𝑜 ′
ℎ
)
)
.

3.2 MPOMDPs

Themultiagent partially observableMarkov decision process (MPOMDP)

is a stochastic, centralized multiagent model for sequential decision-

making under partial observability also characterized by tuple

⟨𝐼 , 𝑆, 𝐴, ¯O,𝑇 ,𝑂, 𝑅⟩. MPOMDP agents also lack a complete picture

of the underlying system state, but can share individual actions 𝑎𝑖
taken and observations received 𝑜𝑖 . This permits a sufficient statistic

in the form of a probability distribution over states called a belief

𝑏 ∈ Δ𝑛 , where 𝑛 is the number of states and Δ𝑛 is the 𝑛 − 1 simplex.

We notate the multiagent belief using 𝑏𝛼 . The belief over successor

states 𝑠′ is updated using the set of agent histories
¯ℎ of actions

taken and observation received:

𝑏′𝛼 (𝑠′) = 𝜂𝑂 (𝑜 ′ | 𝑠′, 𝑎)
∑︁
𝑠∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)𝑏𝛼 (𝑠)

where 𝜂 is a normalizing constant equal to Pr(𝑜′ | 𝑏𝛼 , 𝑎)−1
, and

Pr(𝑜′ | 𝑏𝛼 , 𝑎) =
∑

𝑠′∈𝑆
𝑂 (𝑜′ | 𝑠′, 𝑎) ∑

𝑠∈𝑆
𝑇 (𝑠′ | 𝑠, 𝑎)𝑏𝛼 (𝑠). Belief 𝑏′

𝛼𝑜𝑎

is then generated by applying the belief update equation to all

𝑠′ ∈ 𝑆 . An initial belief 𝑏0
is assumed to avoid considering the

Bellman equation for infinite starting beliefs. From the agent per-

spective, reward must be calculated as a function of belief, such

that 𝑅(𝑏𝛼 , 𝑎) =
∑
𝑠∈𝑆 𝑅(𝑠, 𝑎)𝑏𝛼 (𝑠). In anMPOMDP, we seek a single

joint policy 𝜋𝛼 : Δ𝑛 → 𝐴 that maps beliefs to actions. The expected

value of 𝑏𝛼 over an infinite horizon may be written as:

𝑉 𝜋𝛼 (𝑏𝛼 ) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑏𝑡𝛼 , 𝜋𝛼 (𝑏𝑡𝛼 )) | 𝑏0

𝛼 = 𝑏𝛼 , 𝜋𝛼

]
.

We seek a 𝜋∗𝛼 thatmaximizes expected reward over time, determined

by:

𝜋∗𝛼 ← argmax

𝑎∈𝐴

©­«𝑅(𝑏𝛼 , 𝑎) + 𝛾
∑︁
𝑜 ′∈ ¯O

Pr(𝑜 ′ | 𝑏𝛼 , 𝑎)𝑉 ∗ (𝑏′𝛼𝑜𝑎)
ª®¬.

3.3 Semi-Markov Processes

Definition 1. The semi-Markov property for control admits a distri-

bution over time for state transitions aligned with agent actions.

Definition 2. Sojourn control time 𝜏 is the assignment of general

continuous random variable T .

𝑄 (T ≤ 𝜏, 𝑠′ | 𝑠, 𝑎) (1)

The semi-Markov decision process (SMDP) [25] is a stochastic single

agent model for sequential decision-making with sojourn system

control. The SMDP is characterized by state transition distribution

𝑄 , which is the probability that the next state transition occurs at

or before 𝜏 and results in successor state 𝑠′. It is mathematically

convenient to define 𝑄 as the product of 𝐹 (𝜏 | 𝑠, 𝑎)𝑇 (𝑠′ | 𝑠, 𝑎, 𝜏),
or equivalently 𝐹 (𝜏 | 𝑠′, 𝑎, 𝑠)𝑇 (𝑠′ | 𝑠, 𝑎), where 𝐹 is the cumulative

distribution function of 𝜏 . The distribution of 𝜏 is conditioned on

the current state 𝑠 and action taken 𝑎 and is therefore Markov. The

“semi” in semi-Markov reflects the arbitrary probability distribution

followed by model transitions. When 𝜏 = 0, a new action is taken

to coincide with a decision epoch.

The system natural process time is denoted as 𝜂 ∈ R+, such that

each decision epoch 𝑡 ∈ Nwith corresponding sojourn time 𝜏𝑡 ∈ R+
and state 𝑠𝑡 ∈ 𝑆 occurs at 𝜂𝑡 , where 𝜂𝑡 is decision epoch start time

within the natural process. By consequence, natural process time 𝜂

is the sum of sojourn times

∑
𝜏𝑡 + 𝜖 , where 𝜖 is the elapsed time

since 𝜂𝑡 . Similarly, sojourn time 𝜏𝑡 may be expressed as 𝜂𝑡+1 − 𝜂𝑡 ,
or the difference in natural process times for subsequent decision

epochs.

4 SEMI-DECENTRALIZATION

Definition 3. The semi-Markov property for communication, or

semi-decentralization, admits a distribution over time for what in-

formation agents can store in memory.

Definition 4. Sojourn communication time 𝜏 is general continuous

random variable representing the time for an agent to return to an

information-sharing state.

𝑄 ( ¯T ≤ 𝜏 ′, 𝑠′ | 𝜏, 𝑠, 𝑎, 𝑎′) (2)

As with SMDPs, we can define 𝑄 as the product of 𝐹 (𝜏 ′ | 𝑠′, 𝑎′, 𝜏)
and 𝑇 (𝑠′ | 𝑠, 𝑎, 𝜏), where 𝜏 ′ may be conditioned on the subsequent

joint action set 𝑎′. SMDPs have one agent with an implicit condi-

tioned 𝜏 = 0. However, SDec-POMDPs have multiple agents with

varied 𝜏 . Thus it is more general with 𝜏 ′ conditioned on 𝜏 . Semi-

decentralized models assume an initial 𝜏0
, which can be interpreted

as the communicating state of each agent when 𝜂 = 0. When 𝜏 =

0, information sharing can occur coinciding with a communication

epoch. We assume noise-free instantaneous broadcast communica-

tion resulting in a single communicating agent set as in a blackboard

[7, 8]. Semi-decentralization may however incorporate multiple

distinct communicating sets. Whereas as semi-Markov control sys-

tems toggle model transition dynamics using 𝜏 , semi-decentralized

systems toggle updating histories using 𝜏 .

5 THE SDEC-POMDP

The semi-decentralized partially observable Markov decision pro-

cess (SDec-POMDP) is a stochastic, semi-decentralized multiagent

model for sequential decision-making under partial observability

characterized by tuple ⟨𝐼 , 𝑆, 𝐴, ¯O, 𝐹 ,𝑇 ,𝑂, 𝑅⟩.
Model The SDec-POMDP model introduces selector functions

𝑓 , 𝑔, and ℎ to propagate agent memories, actions, and observa-

tions, respectively, to𝑀𝑖 and𝑀𝑐 through selector sub-nodes con-

ditioned on 𝜏 . Figure 2 depicts a SDec-POMDP dynamic decision

network where selector sub-nodes are contained within 𝑍 sel

𝑖
=

⟨𝑀sel

𝑐𝑖
, 𝐴sel

𝑖
,𝑂sel

𝑖
⟩ and 𝑍 sel

𝑐 = ⟨𝑀̄sel, 𝐴sel,𝑂sel⟩. The selector infras-
tructure defines information-sharing configurations and enables

the model to simultaneously maintain sets of centralized and de-

centralized agents. The set compositions change with changes to 𝜏



Figure 2: The SDec-POMDP dynamic decision network, with

the policy infrastructure on the left and model on the right.

The green backdrop contains the blackboard with memory

𝑀𝑐 generated from the histories of communicating agents.

The gray backdrop with plate notation includes the indi-

vidual agent memories 𝑀𝑖 . 𝑍 selector nodes are selectively

toggled by 𝜏 to facilitate memory propagation 𝜂, represented

by dashed lines. Policy 𝜓 edges are represented by dotted

lines. The SDec-POMDP framework is flexible and can be

easily modified to capture the structural and informational

characteristics of different problem domains. For example,

observations received may be conditioned on 𝜏 , such that

𝑂 (𝑜′ |𝑠′, 𝑎, 𝜏).

following each state transition. Define𝑀𝑐 = (∏𝑖∈𝐼 ({∅}∪𝐴𝑖𝑂𝑖 ))★,
and𝑀𝑖 = (𝐴𝑖𝑂𝑖 )★ ×𝑀𝑐 . The selector functions follow:

∀𝑖, 𝑓 (𝑚sel

𝑐𝑖 ) =
{
𝑚𝑐 if 𝜏𝑖 = 0

∅ if 𝜏𝑖 > 0

𝑓 (𝑚sel

𝑐 ) =
{
∀𝑖,𝑚𝑖 if 𝜏𝑖 = 0

∅ if 𝜏𝑖 > 0

∀𝑖, 𝑔(𝑎sel𝑖 ) =
{
𝑎 𝑗 ∈ 𝑎,∀𝑗 | 𝜏 𝑗 = 0 if 𝜏𝑖 = 0

𝑎𝑖 if 𝜏𝑖 > 0

𝑔(𝑎sel𝑐 ) = {𝑎𝑖 ∈ 𝑎,∀𝑖 | 𝜏𝑖 = 0}

∀𝑖, ℎ(𝑜sel𝑖 )
{
𝑜 𝑗 ∈ 𝑜,∀𝑗 | 𝜏 𝑗 = 0 if 𝜏𝑖 = 0

𝑜𝑖 if 𝜏𝑖 > 0

ℎ(𝑜sel𝑐 ) = {𝑜𝑖 ∈ 𝑜,∀𝑖 | 𝜏𝑖 = 0}.
Policy For generality, assume an SDec-POMDP policy with de-

terministically stored 𝑎𝑖𝑜𝑖 ,∀𝑖 and deterministically selected 𝑎, pa-

rameterized by both 𝜋𝑖 : 𝑀𝑖 → 𝐴 and 𝜋𝑐 : 𝑀𝑐 → 𝐴. Memory

propagation 𝜂 and policy𝜓 probability functions follow:

𝜓 (𝑎) =
{

1,∀𝑖
{
𝑎𝑖 = (𝜋𝑐 (𝑚𝑐 ))𝑖 if 𝜏𝑖 = 0

𝑎𝑖 = 𝜋𝑖 (𝑚𝑖 ) if 𝜏𝑖 > 0

0, otherwise

𝜂𝑐 (𝑚′𝑐 ) =
{
1, if𝑚′𝑐 =𝑚𝑐𝑚̄

sel𝑎sel𝑜sel

0, otherwise

∀𝑖, 𝜂 (𝑚′𝑖 ) =
{
1, if𝑚′𝑖 =𝑚𝑖𝑚

sel

𝑐𝑖 𝑎
sel

𝑖 𝑜sel𝑖
0, otherwise

.

Objective Function The SDec-POMDP objective is to identify

the combination of memory propagation and policy functions that

will maximize expected reward. Consider the infinite horizon case:

𝐽 (𝜓, 𝜂𝑐 , 𝜂) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) | 𝑏0

]
𝐽★ = argmax

𝜓,𝜂𝑐 ,𝜂

𝐽 (𝜓, 𝜂𝑐 , 𝜂).

Rewrite in terms of policies 𝜋 and 𝜋𝑐 and blackboard and agent

memories𝑚𝑐 and 𝑚̄:

𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄) = E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ) | 𝑏0,𝑚𝑐 , 𝑚̄, 𝜋𝑐 , 𝜋

]
=

∑︁
𝑠∈𝑆

𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠)𝑏0 (𝑠)

𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) =
∑︁
𝑎∈𝐴

𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄)
[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝜏∈𝑇

𝐹 (𝑑𝜏 | 𝑠, 𝑎)∑︁
𝑠′∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)
∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎)∑︁
𝑚′𝑐 ∈𝑀𝑐

𝜂𝑐 (𝑚′𝑐 | 𝑚𝑐 , 𝑓 (𝑚̄), 𝑔(𝑎), ℎ(𝑜 ′))

∑︁
𝑚̄′∈𝑀̄

∏
𝑖∈𝐼

𝜂 (𝑚′𝑖 | 𝑚𝑖 , 𝑓 (𝑚𝑐 ), 𝑔(𝑎), ℎ(𝑜 ′))𝑉 𝜋𝑐 ,𝜋 (𝑚′𝑐 , 𝑚̄′, 𝑠′)
]
.

6 THEORETICAL ANALYSIS

Definition 5.Models 𝑋𝜃 and 𝑋𝜙 are equivalent if they reduce to

one another via mapping function 𝑓 , such that 𝑋𝜃 ≤ 𝑋𝜙 and 𝑋𝜙 ≤
𝑋𝜃 .

Definition 6.Model-policy structures 𝑋𝑌𝜃 and 𝑋𝑌𝜙 are equivalent

if they reduce to one another via mapping function 𝑔, such that

𝑋𝑌𝜃 ≤ 𝑋𝑌𝜙 and 𝑋𝑌𝜙 ≤ 𝑋𝑌𝜃 .

Definition 7. Model-policy-objective structures 𝑍𝜃 and 𝑍𝜙 are

equivalent if ∀¯ℎ 𝑉𝑋𝑌𝜃 ( ¯ℎ,𝑏0) = 𝑉𝑋𝑌𝜙 ( ¯ℎ,𝑏0).

6.1 MPOMDP

Lemma 1. SDec-POMDP and MPOMDP models are equivalent.

Proof. Demonstrate that 1. 𝑋MPOMDP ≤ 𝑋SDec-POMDP and 2.

𝑋SDec-POMDP ≤ 𝑋MPOMDP

1. 𝑋MPOMDP ≤ 𝑋SDec-POMDP

Let 𝐼 ′ = 𝐼 , 𝑆 ′ = 𝑆 , 𝐴′ = 𝐴, 𝑅′ = 𝑅, and ¯O′ = ¯O, where prime nota-

tion indicates the SDec-POMDP for purposes of relating models.

The state transition and observation functions are defined to repro-

duce the MPOMDP dynamics independently of 𝜏 , such that 𝑇 ′ (𝑠′ |
𝑠, 𝑎, 𝜏) = 𝑇 (𝑠′ | 𝑠, 𝑎) and 𝑂 ′ (𝑜′ | 𝑠′, 𝑎, 𝜏) = 𝑂 (𝑜′ | 𝑠′, 𝑎). Assume a

deterministic communication sojourn time function 𝐹 , where 𝜏 ′

for each agent is fixed to one, resulting in complete centralization



at subsequent decision epochs; ∀𝑖 , 𝐹 ′ (𝜏 ′
𝑖
< 1 | 𝑠, 𝑎𝑖 , 𝜏𝑖 ) = 0 and

𝐹 ′ (𝜏 ′
𝑖
= 1 | 𝑠, 𝑎𝑖 , 𝜏𝑖 ) = 1. Selector functions therefore return joint ac-

tions and observations at each time-step; ∀𝑖 , 𝑔′ (𝑎sel
𝑖
) = 𝑔′ (𝑎sel𝑐 ) = 𝑎

and ∀𝑖 , ℎ′ (𝑜sel
𝑖
) = ℎ′ (𝑜sel𝑐 ) = 𝑜 .

2. 𝑋SDec-POMDP ≤ 𝑋MPOMDP

Let 𝑅′ = 𝑅 and 𝐴′ = 𝐴. The agent set is extended to include an

additional blackboard agent with an independent memory, so that

𝐼 ′ = 𝐼 ∪ 𝐼c. We assume without loss of generality that |𝐼c | = 1,

and that the communication sojourn time for this agent satisfies

𝜏𝑖 = 0 ∀𝑖 ∈ 𝐼c. The state space is augmented to include 𝜏 , such that

𝑆 ′ = 𝑆 × (R+)𝑛 . Similarly, the joint observation space is expanded

to include the sequence of all action-observation pairs,

¯O′ = ¯O ×
∏
𝑖∈𝐼
(𝐴𝑖𝑂𝑖 )★.

The transition and observation functions adopt the factored state

space: 𝑇 ′ (⟨𝑠′, 𝜏 ′⟩ | ⟨𝑠, 𝜏⟩, 𝑎, 𝑎′) = 𝐹 (𝜏 ′ | 𝑠′, 𝑎′, 𝜏)𝑇 (𝑠′ | 𝑠, 𝑎, 𝜏) and
𝑂 ′ (𝑜′ | ⟨𝑠′, 𝜏 ′⟩, ⟨𝑠, 𝜏⟩, 𝑎) = 𝑂 (𝑜′ | 𝑠′, 𝑠, 𝑎, 𝜏 ′, 𝜏) at its most general.

□

Lemma 2. SDec-POMDP and MPOMDP model-policy structures

are equivalent.

Proof. Demonstrate that 1. 𝑋𝑌MPOMDP ≤ 𝑋𝑌SDec-POMDP and 2.

𝑋𝑌SDec-POMDP ≤ 𝑋𝑌MPOMDP

1. X𝑌MPOMDP ≤ 𝑋𝑌SDec-POMDP

Let each memory selector function return the joint memory, such

that ∀𝑖 , 𝑓 ′ (𝑚sel

𝑐𝑖
) = 𝑓 ′ (𝑚sel

𝑐 ) = 𝑚̄. The update rule for the joint

memory is deterministic and concatenates the prior shared memory

with the complete set of agent actions and observations from the

current time-step, as represented by:

𝜂′ (𝑚̄′) = 𝜂′𝑐 (𝑚′𝑐 ) =
{
1, if 𝑚̄′ = 𝑚̄𝑎sel𝑜sel

0, otherwise.

Agent actions are selected using a policy over the joint memory:

𝜓 ′ (𝑎) =
{
1, 𝑎 = 𝜋 (𝑚̄)
0, otherwise.

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌MPOMDP

Construct policy 𝜋𝑀 (𝑚′
𝑖
) = ⟨𝑎1, ...𝑎𝑛⟩, simulating where the action

for agent 𝑖 is determined to be:

𝑎𝑖 =

{
(𝜋𝑐 (𝑚̄𝑐 ))𝑖 if 𝜏𝑖 = 0

𝜋𝑖 (𝑚𝑖 ) if 𝜏𝑖 > 0

as if each agent draws from the blackboard’s policy when its com-

munication sojourn time is zero and otherwise following a local

policy. The memory update rule is defined to extend the current

memory with the observed joint outcome:

𝜂′ (𝑚̄′) =
{
1, if 𝑚̄′ = 𝑚̄𝑜
0, otherwise.

Joint action selection is consistent with the constructed joint policy:

𝜓 ′ (𝑎) =
{
1,∀𝑖, 𝑎𝑖 = 𝜋𝑀 (𝑚′𝑖 )
0, otherwise.

□

Lemma 3. SDec-POMDP and MPOMDP model-policy-objective

structures are equivalent.

Proof. Show ∀¯ℎ 𝑉𝑋𝑌MPOMDP
( ¯ℎ,𝑏0) = 𝑉𝑋𝑌SDec-POMDP

( ¯ℎ,𝑏0)

Show that the semi-decentralized value function reduces to the

standard value function under the original joint policy. Begin with,

𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) =
∑︁
𝑎∈𝐴

𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄)︸              ︷︷              ︸
1,𝑚𝑐= ¯ℎ

[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝜏∈𝑇

𝐹 (𝑑𝜏 | 𝑠, 𝑎)︸            ︷︷            ︸
1, all RV ⊥⊥ of 𝑑𝜏∑︁

𝑠′∈𝑆
𝑇 (𝑠′ | 𝑠, 𝑎)

∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎)∑︁
𝑚′𝑐 ∈𝑀𝑐

𝜂𝑐 (𝑚′𝑐 | 𝑚𝑐 , 𝑓 (𝑚̄), 𝑔(𝑎), ℎ(𝑜 ′))︸                                          ︷︷                                          ︸
1,𝑚′𝑐=𝑚𝑐𝑎

sel𝑜sel∑︁
𝑚̄′∈𝑀̄

∏
𝑖∈𝐼

𝜂 (𝑚′𝑖 | 𝑚𝑖 , 𝑓 (𝑚𝑐 ), 𝑔(𝑎), ℎ(𝑜 ′))︸                                             ︷︷                                             ︸
1,∀𝑖,𝑚′

𝑖
=𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖

𝑉 𝜋𝑐 ,𝜋 (𝑚′𝑐 , 𝑚̄′, 𝑠′)
]
.

By construction, each under-braced term evaluates deterministi-

cally: the blackboard’s memory update enforces𝑚′𝑐 = 𝑚𝑐𝑎
sel𝑜sel,

each agent’s local memory update yields𝑚′
𝑖
=𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖
, and the

distribution over sojourn times collapse to one. Moreover, since

𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄, 𝑠) = 1 whenever 𝑎 = 𝜋 ( ¯ℎ), we obtain𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) =
𝑉 𝜋 (𝑠, ¯ℎ), which results in standard value recursion:

𝑅(𝑠, 𝜋 ( ¯ℎ)) + 𝛾
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯ℎ))𝑉 𝜋 (𝑠′, ¯ℎ′).

Further observe that 𝑚̄𝑐 = 𝑚̄ and∑︁
𝑠′∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)
∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎) =
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯ℎ)) .

□

Proposition 1. The SDec-POMDP and MPOMDP are equivalent.

6.2 Dec-POMDP

Lemma 4. SDec-POMDP and Dec-POMDP models are equivalent.

Proof. 1. Demonstrate that 𝑋Dec-POMDP ≤ 𝑋SDec-POMDP and 2.

𝑋SDec-POMDP ≤ 𝑋Dec-POMDP

1. 𝑋Dec-POMDP ≤ 𝑋SDec-POMDP

Again set 𝐼 ′ = 𝐼 , 𝑆 ′ = 𝑆 , 𝐴′ = 𝐴, 𝑅′ = 𝑅, and ¯O′ = ¯O. Let 𝑇 ′ (𝑠′ |
𝑠, 𝑎, 𝜏) = 𝑇 (𝑠′ | 𝑠, 𝑎) and 𝑂 ′ (𝑜′ | 𝑠′, 𝑎, 𝜏 ′) = 𝑂 (𝑜′ | 𝑠′, 𝑎). Action
and observation selection are specified so that for every agent 𝑖 ,

𝑔′ (𝑎sel
𝑖
) = 𝑎𝑖 and ℎ

′ (𝑜sel
𝑖
) = 𝑜𝑖 . Assign to the blackboard memory

the null set, such that 𝑔′ (𝑎sel𝑐 ) = ℎ′ (𝑜sel𝑐 ) = ∅. By the construction

of 𝑔′ and ℎ′, 𝜏 has no impact and 𝐹 can be disregarded.

2. 𝑋SDec-POMDP ≤ 𝑋Dec-POMDP

Reference Lemma 1 proof 2, as 𝑋Dec-POMDP = 𝑋MPOMDP.

□

Lemma 5. SDec-POMDP and Dec-POMDP model-policy structures

are equivalent.



Proof. Demonstrate that 1. 𝑋𝑌Dec-POMDP ≤ 𝑋𝑌SDec-POMDP and

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌Dec-POMDP

1. 𝑋𝑌Dec-POMDP ≤ 𝑋𝑌SDec-POMDP

Let each memory selector function return the null set, such that ∀𝑖 ,
𝑓 ′ (𝑚sel

𝑐𝑖
) = 𝑓 ′ (𝑚sel

𝑐 ) = ∅. The update rule for each agent’s memory

is deterministic and concatenates the prior memory with the set of

individual agent actions and observations from the current time-

step, as represented by:

𝜂′ (𝑚′𝑖 ) =
{
1, if𝑚′𝑖 =𝑚𝑖𝑎

sel

𝑖 𝑜sel𝑖
0, otherwise

Agent actions are selected using a policy over the agent’s memory:

𝜓 ′ (𝑎) =
{
1,∀𝑖, 𝑎𝑖 = 𝜋𝑖 (𝑚𝑖 )
0, otherwise

By the construction of𝜓 ′, 𝜂′𝑐 can be disregarded.

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌Dec-POMDP

Construct simulated policy (𝜋𝐷 )𝑖 (𝑚′𝑖 ) = 𝑎𝑖 , where:

𝑎𝑖 =

{
(𝜋𝑐 (𝑚𝑐 ))𝑖 if 𝜏𝑖 = 0

𝜋𝑖 (𝑚𝑖 ) if 𝜏𝑖 > 0

as if each agent draws from the blackboard’s policy when its com-

munication sojourn time is zero and otherwise following a local

policy. Each agent’s memory update rule appends the taken action

and observation to the the current memory:

𝜂′ (𝑚′𝑖 ) =
{
1, if𝑚′𝑖 =𝑚𝑖𝑎𝑖𝑜𝑖
0, otherwise

Agent action selection is consistent with the constructed policy:

𝜓 ′ (𝑎) =
{
1,∀𝑖, 𝑎𝑖 = (𝜋𝐷 )𝑖 (𝑚′𝑖 )
0, otherwise

□

Lemma 6. SDec-POMDP and Dec-POMDP model-policy-objective

structures are equivalent.

Proof. Show ∀¯ℎ 𝑉𝑋𝑌Dec-POMDP
( ¯ℎ,𝑏0) = 𝑉𝑋𝑌SDec-POMDP

( ¯ℎ,𝑏0)
The semi-decentralized value function reduces to the decentralized

value function under the original policy set, beginning with:

𝑉 𝜋𝑐 ,𝜋 ( ��𝑚𝑐︸︷︷︸
𝑀𝑐=∅

, 𝑚̄, 𝑠) =
∑︁
𝑎∈𝐴

𝜓 (𝑎 | ��𝑚𝑐︸︷︷︸
𝑀𝑐=∅

, 𝑚̄)

︸                  ︷︷                  ︸
1

[
𝑅(𝑠, 𝑎)+

𝛾
∑︁
𝜏∈𝑇

𝐹 (𝑑𝜏 | 𝑠, 𝑎)︸            ︷︷            ︸
1, all RV ⊥⊥ of 𝑑𝜏

∑︁
𝑠′∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)
∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎)

∑︁
𝑚̄′∈𝑀̄

∏
𝑖∈𝐼

𝜂 (𝑚′𝑖 | 𝑚𝑖 ,���𝑓 (𝑚𝑐 )︸︷︷︸
𝑀𝑐=∅

, 𝑔(𝑎), 𝑔(𝑎), ℎ(𝑜 ′))

︸                                                     ︷︷                                                     ︸
1,∀𝑖,𝑚′

𝑖
=𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖

(((((((((((((((∑︁
𝑚′𝑐 ∈𝑀𝑐

𝜂𝑐 (𝑚′𝑐 | 𝑚𝑐 , 𝑓 (𝑚̄), 𝑔(𝑎), ℎ(𝑜 ′))︸                                          ︷︷                                          ︸
𝑀𝑐=∅

𝑉 𝜋𝑐 ,𝜋 ( ��𝑚
′
𝑐︸︷︷︸

𝑀𝑐=∅

, 𝑚̄′, 𝑠′)
]
.

By construction, each under-braced term evaluates deterministi-

cally: the blackboard’s memory remains𝑚′𝑐 = ∅, each agent’s local

memory update yields𝑚′
𝑖
= 𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖
, and the distribution over

sojourn times collapses to one. As before, since𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄, 𝑠) = 1

whenever 𝑎 = 𝜋 ( ¯ℎ), we obtain 𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) = 𝑉 𝜋 (𝑠, ¯ℎ), which
results in standard value recursion:

𝑅(𝑠, 𝜋 ( ¯ℎ)) + 𝛾
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯ℎ))𝑉 𝜋 (𝑠′, ¯ℎ′)

Again observe that,∑︁
𝑠′∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)
∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎) =
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯ℎ)) .

□

Proposition 2. The SDec-POMDP and Dec-POMDP are equiva-

lent

Corollary 1. The SDec-POMDP is the same complexity class as a

Dec-POMDP (NEXP-complete)

Proposition 3. The SDec-POMDP and 𝑘-steps-delayed communi-

cation are equivalent

Proposition 4. The SDec-POMDP and Dec-POMDP-Com are

equivalent

We provide proofs for Propositions 3 and 4 in the technical

appendix.

7 RECURSIVE SMALL-STEP

SEMI-DECENTRALIZED A*

Recursive small-step semi-decentralized A* (RS-SDA*) is an

exact planning algorithm for optimizing expected reward in SDec-

POMDP problems. RS-SDA* modifies RS-MAA* [16] by maintaining

a stage-specific partition of decentralized and centralized joint-

observation histories per probabilistic communication dynamics.

Like RS-MAA*, RS-SDA* relies on incremental expansion of a small-

step search tree, clustering, recursive heuristics, memoization, and

last stage modifications. RS-SDA* generates a fully-specified policy



set 𝜋 ∈ Π using offline planning. A fully-specified policy contains

both fully-specified local policies and, if appropriate for the problem,

a blackboard policy 𝜋 = ⟨𝜋1, ...𝜋𝑛, 𝜋𝑐 ⟩ where 𝜋𝑖 : Oℎ → 𝐴𝑖 and

𝜋𝑐 :
¯Oℎ → 𝐴. Similarly, 𝜑 = ⟨𝜑1, ...𝜑𝑛, 𝜑𝑐 ⟩, 𝜑𝑖 : O≤ℎ−1 → 𝐴𝑖 , and

𝜑 :
¯O≤ℎ−1 → 𝐴. RS-SDA* is outlined in Algorithm 1.

Small-Step Search TreeWe adopt the small-step approach first

introduced by Cazenave for A* and used by Koops et al. in RS-MAA*

to limit search tree outdegree. Small-step search can be used with

both centralized and decentralized components of each policy node,

depicted in Figure 4. As shown in Table 1, small-step search provides

RS-SDA* with mixed component policies, pre-clustering, a lower

bound (complete decentralization) and an upper bound (complete

centralization) on the number of considered nodes per stage 𝑡 .When

both 𝐹 (𝜏 | 𝑠, 𝑎) = 𝐹 (𝜏 | 𝑎) and given a deterministic policy, we

can consolidate the centralized and decentralized components of

policies and significantly reduce the search tree size. This results

in an RS-SDA* lower bound that is equivalent to RS-MAA* and an

RS-SDA* upper bound that has |O★ |𝑡𝑛 levels per stage and considers

|𝐴★ |𝑛 joint actions per level, where |O★ | is the size of the largest
observation set and |𝐴★ | is the size of the largest action set.

RS-MAA* RS-SDA* Classical MAA*

(RS-SDA* lower bound) upper bound

levels nodes/stage levels nodes/stage levels nodes/stage

𝑡 𝑛 |𝑂★ |𝑡 𝑛 |O★ |𝑡 |𝐴★ | |O★ |𝑡𝑛 |O★ |𝑡𝑛 |𝐴★ |𝑛 1 |𝐴★ |𝑛 | O★ |
𝑡

0 2 6 1 9 1 9

1 4 12 4 36 1 81

2 8 24 16 144 1 6,561

3 16 48 64 576 1 >1E6

4 32 96 256 2,304 1 >1E6

5 64 192 1,024 9,216 1 >1E6

6 128 384 4,096 36,864 1 >1E6

7 256 768 16,384 147,456 1 >1E6

8 512 1536 65,536 589,824 1 >1E6

Table 1: Pre-clustered SDec-Tiger levels and nodes per stage

by stage for RS-MAA*, RS-SDA*, and classical MAA*. |𝐴★ | = 3,

|𝑂★ | = 2, and 𝑛 = 2.

Dynamic ProgrammingWe apply backward induction over be-

liefs to rapidly determine the value of centralized policy compo-

nents. This bypasses expensive recursive heuristic calculations for

large portions of the search. For each remaining horizon 𝑟 and belief

𝑏, we compute𝑉𝑟 (𝑏) and𝑄𝑟 (𝑏, 𝑎) and memoize both𝑉 and𝑄 under

keys (𝑟, 𝑏) and (𝑟, 𝑏, 𝑎) to enable extensive reuse during A* expan-

sion. Similarly, observation likelihoods 𝑃 (𝑜 | 𝑏, 𝑎) and posteriors

(𝑏′𝑜,𝑎) are obtained via a belief update over the model’s transition

and observation tensors, then cached for subsequent calls.

Ordering Observation Histories Any 𝜑 may contain both decen-

tralized and centralized mappings conditioned on the underlying

state and actions taken. We therefore explore joint-observation

histories (JOH) and local observation histories (LOH) in a predeter-

mined sequence: stage, JOH then LOH, by agent (for LOHs), then

lexicographically. Observe that, for length 𝑡 , all 𝑜0:𝑡 ⪯ 𝑜0:𝑡
and all

𝑜0:𝑡 ⪯ 𝑜0:𝑡 ′
. Additionally, 𝑜0:𝑡 ⪯

lex
𝑜0:𝑡

, and 𝑜0:𝑡
𝑖
⪯ 𝑜0:𝑡

𝑗
if (𝑖 < 𝑗) or

(𝑖 = 𝑗 ∧ 𝑜0:𝑡
𝑖
⪯
lex

𝑜0:𝑡
𝑗
).

Clustering We implement lossless incremental clustering in de-

centralized policy components based on a probabilistic equivalence

criterion [24]. We similarly cluster centralized policy components

based on the resulting joint belief, or ∀𝑠 , P(𝑠 | 𝑜0:𝑡
1
) = P(𝑠 | 𝑜0:𝑡

2
).

Admissible Heuristic As with multiagent A* (MAA*) [32], an

admissible heuristic 𝑄 guides a path through a search tree with

partial policies as nodes 𝜑 . A heuristic is admissible if it equals or

over-approximates the true value of the policy node. An open list is

maintained with nodes under consideration. The node in the open

list with the highest heuristic value is expanded and replaced in the

open list by its children. The tree search terminates once a fully-

specified policy with the highest heuristic value is identified. For

each parent node and candidate action, we split each posterior belief

by 𝑆𝜏 and 𝐴𝜏 (more generally expressed using 𝐹 (𝑠, 𝑎)) and take a

probability-weighted sum of the exact centralized value on the

communication-dependent posterior and the exact decentralized

value on its complement. Because every constituent (centralized,

decentralized, and their mixture conditioned on communication) is

an exact optimum of a relaxation of the remaining subproblem, the

resulting heuristic never underestimates the achievable return

and is therefore admissible.

Figure 3: Illustrating RS-SDA* applied to SDec-Tiger using

mixed component policies through stage 𝜎 = 2.

8 EXPERIMENTS

Semi-Decentralized Benchmarks We evaluate RS-SDA* in semi-

decentralized versions of four common Dec-POMDP benchmarks:

Dec-Tiger [18], FireFighting [23], BoxPushing [26], and Mars

[2], and in a new MaritimeMEDEVAC benchmark. Problem de-

scriptions with illustrations are disclosed in the technical appendix.

All experiments were conducted using an 11th Gen Intel 2.50GHz



Algorithm 1: Recursive Small-Step Semi-Decentralized A*

Input :𝑆𝜏 ⊆𝑆 synchronization states;𝐴𝜏 ⊆𝐴 synchronization actions; ℎ

horizon; 𝑏 initial belief; 𝜑 initial (partial) policy; 𝑑 heuristic depth;

𝑀 iterations; 𝛼 threshold; 𝑢 upper bound

Output :optimal policy 𝜑∗, optimal value 𝑣∗
function RS-SDA*(ℎ,𝑏,𝜑,𝑑,𝑀, 𝛼,𝑢, 𝑆𝜏 , 𝐴𝜏 ) :

𝑄 ← PriorityQueue(↑)
𝑄.push(min(𝜑.heuristics), 𝜑 )
𝑖 ← 0

while true do

(𝑣, 𝜑 ) ← 𝑄.pop( )
if 𝜑 fully specified then return (𝑣, 𝜑 )
if 𝑣 < ∞ then 𝑖 ← 𝑖 + 1

if 𝑖 ≥ 𝑀 or 𝑣 ≤ 𝑢 then return (min(𝑣,𝑢 ),None)
𝑘 ← current stage of 𝜑

if 𝜎𝑘 complete then

(𝐷
dec

, 𝐷cen, 𝑃dec
, 𝑃cen,𝑚dec

) ← Terminal(𝜑, 𝑆𝜏 , 𝐴𝜏 )
if𝑚

dec
> 0 then

𝜑 ← ClusterPolicyDec(𝜑,𝐷
dec

, 𝑃
dec
)

if𝑚
dec

< 1 then

𝜑 ← ClusterPolicyCEN(𝜑,𝐷cen, 𝑃cen )
𝑤 ← EvaluatePolicy(𝜑,𝑘 )
𝜑.heuristics.append(𝑤 )
𝜑.depth← min(𝑘,𝑑 )
𝑘 ← 𝑘 + 1

if 𝜎𝑘 is final and some centralized child is unfilled then

determine 𝑎∗ for all centralized component LOHs

𝜑 ′ ← 𝜑 with 𝑎∗ set

𝑤 ← EvaluatePolicy(𝜑 ′, 𝑘 )
𝑄.push(𝑤,𝜑 ′ )

else if 𝜎𝑘 is final and one agent’s decentralized children is unfilled

then

determine 𝑎∗𝑖 for all agent decentralized component LOHs

𝜑 ′ ← 𝜑 with 𝑎∗𝑖 set

𝑤 ← EvaluatePolicy(𝜑 ′, 𝑘 )
if 𝑤 = 𝑣 then return (𝑤,𝜑 ′ )
𝑄.push(𝑤,𝜑 ′ )

else if some centralized child at 𝜎𝑘 unfilled then

foreach joint action 𝑎 ∈ 𝐴 do

𝜑 ′ ← 𝜑 with 𝑎 set

𝑤 ← EvaluatePolicy(𝜑 ′, 𝑘 )
𝑄.push(𝑤,𝜑 ′ )

end

else if some agent 𝑖 has an unset decentralized entry at 𝜎𝑘 then

foreach 𝑎𝑖 ∈ 𝐴 do

𝜑 ′ ← 𝜑 with 𝑎𝑖 set

𝑤←EvaluatePolicy(𝜑 ′, 𝑘 )
𝑄.push(𝑤,𝜑 ′ )

end

end

i7 CPU, with timeout occurring at 20 minutes and memory out at

16 GB. We adopt hyper-parameters𝑀 = 200, 𝑑 = 3, and 𝛼 = 0.2 for

all experiments. A link to our code repository is provided in the

technical appendix to support reproducibility.

Results As shown in Table 2 and Figure 4, RS-SDA* is competitive

with the centralized upper bound across most semi-decentralized

benchmarks and MaritimeMEDEVAC. The modified benchmarks

demonstrate how model dynamics influence the value of infor-

mation in multi-agent systems. SDec-FireFighting exemplifies

problems where centralization benefits are negligible, and the opti-

mal RS-SDA* solution equals the optimal RS-MAA* solution for all

considered ℎ. By contrast, SDec-Box exemplifies problems where

partial centralization results in complete information sharing, and

the optimal RS-SDA* solution equals the fully centralized optimum

for all considered ℎ. For SDec-Tiger, the semi-decentralization

substantially improves over the lower bound but remains below the

centralized upper bound. InMaritimeMEDEVAC, the three regimes

are nearly indistinguishable at moderate horizons (𝐻 = 5, 6), but

at 𝐻 = 7 centralized reaches 6.62 while semi-decentralized attains

4.54, clearly outperforming full decentralization (3.27). At 𝐻 = 7,

the semi-decentralized policy recovers about 69% of the central-

ized value. These results indicate that semi-decentralization and

RS-SDA* preserve much of the benefit of centralized coordination

while staying tractable, with occasional slowdowns or timeouts on

problem instances where lossless clustering is largely ineffective.

lower bound our approach upper bound

decentralized semi-decentralized centralized

RS-MAA* RS-SDA* VI

ℎ value time value time value time

SDec-Tiger

8 12.21726 2 27.21518 <1 47.71696 <1

9 15.57244 19 30.90457 <1 53.47353 <1

10 15.18438 TO 34.72370 <1 60.50990 <1

SDec-FireFighting (𝑛ℎ = 3, 𝑛𝑓 = 3)

3 -5.73697 <1 -5.72415 <1 -5.72285 <1

4 -6.57883 8 -6.56419 7 -6.51859 7

5 -7.06987 89 -6.98102 94 -6.98069 94

SDec-BoxPushing

3 66.08100 <1 66.81000 <1 66.81000 <1

4 98.59613 24 99.55630 <1 99.55630 <1

5 107.72985 MO 109.09251 1 109.09251 1

SDec-Mars (Right Band Rendezvous)

4 10.18080 3 10.18080 <1 10.87020 <1

5 13.26654 9 14.29038 <1 14.38556 1

6 18.62317 19 20.06430 2 20.06706 3

SDec-Mars (Survey Site Beacons)

4 10.18080 3 10.54620 <1 10.87020 <1

5 13.26654 9 13.26654 <1 14.38556 1

6 18.62317 19 18.62317 143 20.06706 3

SDec-Mars (Drill Site Beacons)

4 10.18080 3 10.87020 <1 10.87020 <1

5 13.26654 9 14.38556 <1 14.38556 1

6 18.62317 19 20.06168 2 20.06706 3

MaritimeMEDEVAC

5 3.46017 <1 3.48345 1 3.49629 <1

6 3.18348 <1 3.19807 28 3.19945 <1

7 3.26710 2 6.36301 37 6.61819 1

8 8.03228 260 10.61275 660 10.88244 1

Table 2: RS-MAA* offline planning and RS-SDA* offline

planning/online search performance on semi-decentralized

benchmarks and the Maritime MEDEVAC problem. TO and

MO denote timeout (>1200s) and memout (>16GB).

9 CONCLUSION

We present a foundational framework for multiagent decision mak-

ing under probabilistic communication. We formalize the semi- de-

centralization property and introduce the SDec-POMDP, which uni-

fies the Dec-POMDP,MPOMDP, and several communicationmecha-

nisms with delay, loss, or cost. A secondary contribution is RS-SDA*,

an admissible heuristic search algorithm for semi-decentralized sys-

tems with performance comparable to the state-of-the-art, and

semi-decentralized versions of four standard benchmarks and a



Figure 4: MaritimeMEDEVAC environment representation

and centralized/decentralized/semi-decentralized optimal

policy values for horizons one through seven.

new medical evacuation scenario. Taken together, SDec-POMDP

and RS-SDA* provide a principled basis for studying and exploiting

probabilistic communication in cooperative teams. Future work

includes exploiting interleaving offline planning and online search

to improve approximate RS-SDA* performance and investigating

systems with non-stationary sojourn time distributions.
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A APPENDIX

A.1 𝑘-Steps Delayed Communication

𝑘-steps delayed communication [19], [21], [23] is a model for delayed

broadcast communication where each agent receives the complete

joint history from 𝑡 − 𝑘 at 𝑡 . This enables 𝑘-steps delayed com-

munication to generate a joint belief 𝑏𝑡−𝑘 on which to conduct

subsequent decentralized planning. We formally define the agent

histories under 𝑘-steps delayed communication, below:

𝐻 𝑡
𝑖 = (𝐴𝑖𝑂𝑖 )𝑡

¯ℎ𝑖 ∈ 𝐻𝑖,𝑘 =

∞⋃
𝑡=1

∏
𝑗∈𝐼

{
𝐻 𝑡
𝑖 if 𝑗 = 𝑖

𝐻
max{0, 𝑡 − 𝑘}
𝑗

otherwise

¯̄ℎ =
∏
𝑖∈𝐼

¯ℎ𝑖

Lemma 7. SDec-POMDP and 𝑘-steps delayed communication mod-

els are equivalent.

Proof. Demonstrate that 1. 𝑋𝑘-steps Delayed ≤ 𝑋SDec-POMDP and

2. 𝑋SDec-POMDP ≤ 𝑋𝑘-steps Delayed

1. 𝑋𝑘-steps Delayed ≤ 𝑋SDec-POMDP

Let 𝐼 ′ = 𝐼 , 𝑆 ′ = 𝑆 , 𝐴′ = 𝐴, 𝑅′ = 𝑅, and ¯O′ = ¯O. The state transi-
tion and communication sojourn time functions are independent

of 𝜏 such that 𝑇 ′ (𝑠′ | 𝑠, 𝑎, 𝜏) = 𝑇 (𝑠′ | 𝑠, 𝑎) and 𝑂 ′ (𝑜′ | 𝑠′, 𝑎, 𝜏 ′) =
𝑂 (𝑜′ | 𝑠′, 𝑎). Again assume a deterministic communication sojourn

time function 𝐹 , where 𝜏 ′ for each agent is fixed to one, result-

ing in complete centralization at subsequent decision epochs; ∀𝑖 ,
𝐹 ′ (𝜏 ′

𝑖
< 1 | 𝑠, 𝑎𝑖 , 𝜏𝑖 ) = 0 and 𝐹 ′ (𝜏 ′

𝑖
= 1 | 𝑠, 𝑎𝑖 , 𝜏𝑖 ) = 1. Blackboard

selector functions return joint actions and observations at each time-

step; 𝑔′ (𝑎sel𝑐 ) = 𝑎 and ℎ′ (𝑜sel𝑐 ) = 𝑜 . Agent selector functions return

agent actions and observations at each time-step; ∀𝑖 , 𝑔′ (𝑎sel
𝑖
) = 𝑎𝑖

and ∀𝑖 , ℎ′ (𝑜sel
𝑖
) = 𝑜𝑖 .

2. 𝑋SDec-POMDP ≤ 𝑋𝑘-steps Delayed
Let 𝑘 = 0. See proof of Lemma 4 for construction of a SDec-POMDP

model within a Dec-POMDP. □

Lemma 8. SDec-POMDP and 𝑘-steps delayed model-policy struc-

tures are equivalent.

Proof. Demonstrate that𝑋𝑌𝑘-steps Delayed ≤ 𝑋𝑌SDec-POMDP and

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌𝑘-steps Delayed

1. 𝑋𝑌𝑘-steps Delayed ≤ 𝑋𝑌SDec-POMDP

For any object X carrying a time index, 𝑋
��
0:𝑟

denotes the same

object with indices > 𝑟 disabled/ignored. Let each agent memory

selector function return the blackboard memory at 𝑡 − 𝑘 , such that

∀𝑖 , 𝑓 ′ (𝑚sel

𝑐𝑖
) =𝑚𝑡

𝑐

��
0: 𝑡−𝑘 . The blackboard memory selector function

returns the latest joint agent memory set. The update rule for each

agent’s memory is deterministic and concatenates the prior memory

with the set of individual agent actions and observations from the

current time-step:

𝜂′ (𝑚′𝑖 ) =
{
1, if𝑚′𝑖 =𝑚𝑖𝑚

sel

𝑐𝑖 𝑎
sel

𝑖 𝑜sel𝑖
0, otherwise.

Agent actions are selected using a policy over the agent’s memory:

𝜓 ′ (𝑎) =
{
1,∀𝑖, 𝑎𝑖 = 𝜋𝑖 (𝑚𝑖 )
0, otherwise.

Finally, the update rule for the blackboard memory is deterministic

and concatenates the prior shared memory with the complete set

of agent actions and observations from the current time-step:

𝜂𝑐 (𝑚′𝑐 ) =
{
1, if𝑚′𝑐 =𝑚𝑐𝑎

sel𝑜sel

0, otherwise.

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌𝑘-steps Delayed
Let 𝑘 = 0. See proof of Lemma 5 for construction of a SDec-POMDP

model-policy structure within a Dec-POMDP.

□

Lemma 9. SDec-POMDP and𝑘-steps delayedmodel-policy-objective

structures are equivalent.

The semi-decentralized value function reduces to the k-steps de-

layed value function under the original policy set, beginning with:

Proof. Show ∀¯ℎ 𝑉𝑋𝑌𝑘-steps Delayed ( ¯ℎ,𝑏0) = 𝑉𝑋𝑌SDec-POMDP
( ¯ℎ,𝑏0)

𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) =
∑︁
𝑎∈𝐴

𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄)︸              ︷︷              ︸
1,𝑚𝑐= ¯ℎ

[
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝜏∈𝑇

𝐹 (𝑑𝜏 | 𝑠, 𝑎)︸            ︷︷            ︸
1, all RV ⊥⊥ of 𝑑𝜏∑︁

𝑠′∈𝑆
𝑇 (𝑠′ | 𝑠, 𝑎)

∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎)∑︁
𝑚′𝑐 ∈𝑀𝑐

𝜂𝑐 (𝑚′𝑐 | 𝑚𝑐 , 𝑓 (𝑚̄), 𝑔(𝑎), ℎ(𝑜 ′))︸                                          ︷︷                                          ︸
1,𝑚′𝑐=𝑚𝑐𝑎

sel𝑜sel∑︁
𝑚̄′∈𝑀̄

∏
𝑖∈𝐼

𝜂 (𝑚′𝑖 | 𝑚𝑖 , 𝑓 (𝑚𝑐 ), 𝑔(𝑎), ℎ(𝑜 ′))︸                                             ︷︷                                             ︸
1,∀𝑖,𝑚′

𝑖
=𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖

𝑉 𝜋𝑐 ,𝜋 (𝑚′𝑐 , 𝑚̄′, 𝑠′)
]

By construction, each under-braced term evaluates deterministi-

cally: the blackboard’s memory update enforces𝑚′𝑐 = 𝑚𝑐𝑎
sel𝑜sel,

each agent’s local memory update yields𝑚′
𝑖
=𝑚𝑖𝑎

sel

𝑖
𝑜sel
𝑖
, and the

distribution over communication sojourn times collapse to one.

Moreover, since 𝜓 (𝑎 | 𝑚𝑐 , 𝑚̄, 𝑠) = 1 whenever 𝑎 = 𝜋 ( ¯̄ℎ), we ob-

tain 𝑉 𝜋𝑐 ,𝜋 (𝑚𝑐 , 𝑚̄, 𝑠) = 𝑉 𝜋,𝑘 (𝑠, ¯̄ℎ), which results in standard value

recursion:

𝑅(𝑠, 𝜋 ( ¯̄ℎ) + 𝛾
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯̄ℎ)𝑉 𝜋 (𝑠′, ¯̄ℎ)

Observe that:∑︁
𝑠′∈𝑆

𝑇 (𝑠′ | 𝑠, 𝑎)
∑︁
𝑜 ′∈ ¯O

𝑂 (𝑜 ′ | 𝑠′, 𝑎) =
∑︁
𝑠′∈𝑆

∑︁
𝑜 ′∈O

Pr(𝑠′, 𝑜 ′ | 𝑠, 𝜋 ( ¯̄ℎ))

□

Proposition 5. The SDec-POMDP and 𝑘-steps delayed are equiv-

alent.



A.2 Dec-POMDP-Com

The Dec-POMDP-Com [9] extends explicit communication to the

Dec-POMDP by including an alphabet of possible messages Σ and

communication cost function 𝐶Σ. For a specified cost, each agent

takes a communication action after their control action, which un-

der the instantaneous broadcast communication assumption results

in all other agents receiving an additional observation. Unlike the

SDec-POMDP, agents in a Dec-POMDP-Com are never entirely

restricted from communication. The algorithm designer may cen-

tralize the agents in a Dec-POMDP-Com (for cost) at will.

Lemma 10. SDec-POMDP and Dec-POMDP-Commodels are equiv-

alent.

Proof. Demonstrate that 𝑋Dec-POMDP-Com ≤ 𝑋SDec-POMDP and

2. 𝑋SDec-POMDP ≤ 𝑋Dec-POMDP-Com

1. 𝑋Dec-POMDP-Com ≤ 𝑋SDec-POMDP

Reference 𝑋Dec-POMDP-Com ≤𝑝 𝑋Dec-POMDP [27] and 𝑋Dec-POMDP

≤ 𝑋SDec-POMDP in proof of Lemma 4.

2. 𝑋SDec-POMDP ≤ 𝑋Dec-POMDP-Com

Reference 𝑋SDec-POMDP ≤ 𝑋Dec-POMDP in proof of Lemma 4 and

𝑋Dec-POMDP ≤𝑝 𝑋Dec-POMDP-Com [27].

□

Lemma 11. SDec-POMDP and Dec-POMDP-Com model-policy

structures are equivalent.

Proof. Demonstrate that 𝑋𝑌Dec-POMDP-Com ≤ 𝑋𝑌SDec-POMDP

and 2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌Dec-POMDP-Com

1. 𝑋𝑌Dec-POMDP-Com ≤ 𝑋𝑌SDec-POMDP

Reference𝑋𝑌Dec-POMDP-Com ≤𝑝 𝑋𝑌Dec-POMDP [27] and𝑋𝑌Dec-POMDP

≤ 𝑋𝑌SDec-POMDP in proof of Lemma 5.

2. 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌Dec-POMDP-Com

Reference 𝑋𝑌SDec-POMDP ≤ 𝑋𝑌Dec-POMDP in proof of Lemma 5 and

𝑋𝑌Dec-POMDP ≤𝑝 𝑋𝑌Dec-POMDP-Com [27].

□

Lemma 12. SDec-POMDP and Dec-POMDP-Com model-policy-

objective structures are equivalent.

Proof. Demonstrate that ∀¯ℎ 𝑉𝑋𝑌Dec-POMDP-Com
( ¯ℎ,𝑏0) =

𝑉𝑋𝑌SDec-POMDP
( ¯ℎ,𝑏0)

Reference ∀¯ℎ 𝑉𝑋𝑌Dec-POMDP
( ¯ℎ,𝑏0) = 𝑉𝑋𝑌SDec-POMDP

( ¯ℎ,𝑏0) in proof of

Lemma 6.

□

Proposition 6. The SDec-POMDP and Dec-POMDP-Com are

equivalent.

A.3 Semi-Decentralized Benchmarks

A.3.1 SDec-Tiger. Consider the following semi-decentralized vari-

ation on the Dec-Tiger benchmark [18], depicted in Figure 5. SDec-

Tiger has 2 states, 3 actions, and 2 observations. Two cooperative

agents stand behind two doors. One door leads to a room containing

a tiger while the other leads to a room containing treasure. Each

agent has three actions: opening the left door𝑂𝐿, opening the right

door 𝑂𝑅, and listening 𝐿. The problem reward function is fully

described in table 3. The problem resets when any door is opened;

the probability that the tiger is behind the left door𝑇𝐿 and that the

tiger is behind the right door𝑇𝑅 both become 0.5. Joint actions that

do not open doors do not affect the underlying state. Agents have

an 75% chance of accurately communicating their action observa-

tion histories if they both listen. After taking an action, each agent

receives one of two observations, hear tiger on left 𝐻𝐿 or hear tiger

on right 𝐻𝑅. Listening to either door gives an 0.75 probability of

returning the correct observation. Opening a door and resetting the

problem results in both agents receiving either observation with a

0.5 probability. If one agent opens a door while the other listens,

the listening agent will not know the problem has been reset.

Table 3: SDec-Tiger Rewards (𝑇𝐿, 𝑇𝑅)

𝑎 𝑂𝐿 𝑂𝑅 𝐿

𝑂𝐿 (-50, 20) (-100, -100) (-101, 9)

𝑂𝑅 (-100, -100) (20, -50) (9, -101)

𝐿 (-101, 9) (9, -101) (-2, -2)

Figure 5: Illustration of four of nine possible joint actions

for SDec-Tiger. Agents communicate their observation his-

tories with some probability when they listen to the same

door (in green).

A.3.2 SDec-FireFighting. Consider the following semi-decentralized

variation on the FireFighting benchmark [23], depicted in Figure

6. SDecBoxPushing (𝑛𝑓 = 3, 𝑛ℎ = 3) has 432 states, 3 actions, and

2 observations. 2 agents are tasked with addressing a line of 𝑛ℎ
houses, each with fire severity status 𝑓 in range [0, 𝑛𝑓 ] initially

sampled from a uniform distribution. Each agent selects a house to

suppress at each time-step. Single agent suppression decrements

𝑓 by 1 with probability 1.0 if all adjacent houses have 𝑓 = 0 or

with probability 0.6 otherwise. Dual agent suppression resets 𝑓

to 0. Agents only communicate their observation histories if they

suppress the same house. A house without a firefighter present

increments its 𝑓 by 1 with probability 0.8 if an adjacent house has

𝑓 > 0 or with probability 0.4 if all adjacent houses have 𝑓 = 0. A

house with 𝑓 = 0 will catch fire (increment 𝑓 by 1) with probabil-

ity 0.8 if an adjacent house has 𝑓 > 0. Each agent observes their

selected house to be on fire or not with probability 0.2 if 𝑓 = 0,

probability 0.5 if 𝑓 = 1, and probability 0.8 if 𝑓 ≥ 2. The cooperative

agent team is rewarded the summation of −𝑓 across all𝑛ℎ following

action selection.



Figure 6: Illustration of two of nine joint actions in SDec-

FireFighting (𝑛ℎ = 3, 𝑛𝑓 = 4). Agents communicate when

they suppress the same house, shown in green.

A.3.3 SDec-BoxPushing. Consider the following semi-decentralized

variation on the BoxPushing benchmark [26], depicted in Figure 7.

SDecBoxPushing has 100 states, 4 actions, and 5 observations. 𝑛

agents cooperate to push small and large boxes into an established

goal area. Each agent can choose to rotate left, rotate right, move

forward, or remain in place. Rotation and movement actions are

successful with a 0.9 probability, otherwise the agent remains in

place. Forward movement while facing a box will cause the box

to translate one unit in the direction of movement, if permissible.

A single agent can push a small box but two agents must act in

tandem to push a large box. Movement into a wall, or into a large

box with one agent, will result in remaining in place. Each agent

correctly observes what is in front of them: a wall, a small box, a

large box, an empty space, or another agent. Agents share their

observation histories when simultaneously occupying one or more

established communication grid squares. Agents receive a −0.1𝑛

reward after each time-step, a −5 reward for each agent that moves

into a wall, a +10 reward for each small box pushed into the goal

area, and a +100 reward for each large box pushed into the goal

area. The problem resets as soon as any box reaches the goal state.

We adopt the environment configuration depicted in Figure 7.

Figure 7: Illustration of the SDec-BoxPushing environment.

Agents communicate when they are both in the green square.

A.3.4 SDec-Mars. Consider the following semi-decentralized vari-

ation on the Mars benchmark [2], depicted in Figure 8. SDec-Mars

has 256 states, 6 actions, and 8 observations. Each of two agents can

choose to move north, south, east, and west in a 2x2 grid, or con-

duct an experiment of choice (drilling or sampling) in their current

location. Two grid squares are intended to be sampled by one agent

and the other two grid squares require that both agents drill simul-

taneously. Each agent accurately observes their location in the 2x2

grid and whether an experiment has already been performed there.

Agents share their observation histories while simultaneously oc-

cupying a designated communication grid square. The problem

resets once an experiment is performed in all four grid squares. The

cooperative agent team receives a large positive reward for drilling

a drill site, a small positive reward for sampling a sample site, a

large negative reward for drilling a sample site, and a small positive

reward for sampling a drill site. Attempting a second experiment

on the same site incurs a small negative reward.

(a) (b) (c)

Figure 8: Illustration of the SDec-Mars environment. Agents

in (a), the survey site beacon scenario, can communicate

when co-located or adjacent to the same not yet surveyed

survey site. Agents in (b), the right band rendezvous scenario,

communicate alongside the right side of the grid when at

least one site remains incomplete. Agents in (c), the drill

site beacon scenario, can communicate when co-located or

adjacent to the same not yet drilled drill site.

Figure 9: Illustration of the MaritimeMEDEVAC environ-

ment. Agents communicate when they are positioned adja-

cent to patient pickup and drop-off sites.

A.3.5 MaritimeMEDEVAC. We introduce a new semi-decentralized

MEDEVAC benchmark involving a 4 × 4 gridworld archipelago,

depicted in Figure 9. MaritimeMEDEVAC has 512 states, 3 ac-

tions, and 2 observations. Two agents, a medical aircraft and a

transport ship, must retrieve a patient at (1, 1) and deliver them

to a hospital at (3, 3). At each time-step, agents selects one of

Wait,Advance,Exchange. Advance moves one cell toward

the current target (patient if 𝑐𝑎𝑟𝑟𝑦 = 0, else hospital), succeeding

independently with probability 0.95 for the aircraft and 0.85 for

the boat. Wait leaves the agent position unchanged. Exchange

attempts a joint pickup/drop that succeeds with probability 0.95

when both agents are at the corresponding site (toggling 𝑐𝑎𝑟𝑟𝑦).

Each agent receives a binary observation indicating whether it is at-

target (patient if 𝑐𝑎𝑟𝑟𝑦 = 0, hospital if 𝑐𝑎𝑟𝑟𝑦 = 1) or not. The team



incurs -0.3 per step, issuing Exchange away from {(1, 1), (3, 3)}
costs -1.0, a solo pickup or solo drop-off incurs -6.0, and joint pickup

or drop-off grants +5.0 and +12.0 respectively. Agents share obser-

vation histories in a subset of “one-arrived, one-not” states: at the

patient when the aircraft is at (1, 1) and the boat remains at (1, 0)
with (𝑐𝑎𝑟𝑟𝑦 = 0), and at the hospital when one agent is at (3, 3) and

the other at (3, 2) with (𝑐𝑎𝑟𝑟𝑦 = 1) (both permutations). Agents

cannot communicate in any other states.

A.4 Code

Results for semi-decentralized benchmarks may be reproduced at:

https://github.com/csapidus/RSSDA.git
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