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ABSTRACT

We introduce an expressive framework and algorithms for the semi-
decentralized control of cooperative agents in environments with
communication uncertainty. Whereas semi-Markov control admits
a distribution over time for agent actions, semi-Markov commu-
nication, or what we refer to as semi-decentralization, gives a dis-
tribution over time for what actions and observations agents can
store in their histories. We extend semi-decentralization to the par-
tially observable Markov decision process (POMDP). The resulting
SDec-POMDP unifies decentralized and multiagent POMDPs and
several existing explicit communication mechanisms. We present
recursive small-step semi-decentralized A* (RS-SDA*), an exact al-
gorithm for generating optimal SDec-POMDP policies. RS-SDA*
is evaluated on semi-decentralized versions of several standard
benchmarks and a maritime medical evacuation scenario. This pa-
per provides a well-defined theoretical foundation for exploring
many classes of multiagent communication problems through the
lens of semi-decentralization.
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1 INTRODUCTION

Many complex real-world problems require the coordination of
multiple cooperative agents to solve, but feature limited opportuni-
ties for information exchange. The decentralized partially observ-
able Markov decision process (Dec-POMDP) formalizes multi-agent
planning and control in settings where explicit communication is
impossible [1, 4, 5]. Several model variants take advantage of exist-
ing, if limited information structures and extend the Dec-POMDP
to explicitly incorporate costly [10], delayed [20, 21], lossy [33], or
intermittent [34] communication.

In this paper we pursue a general framework that unifies several
multiagent communication mechanisms. We are especially inter-
ested in problems whose communication dynamics are conditioned
with some probability on the underlying state or taken actions.
An example domain is area-wide Global Positioning System (GPS)
denial via jamming [11]. As seen in the maritime medical evac-
uation scenario depicted in Figure 1, agents need to coordinate
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Figure 1: A semi-decentralized multiagent medical evacua-
tion scenario with probabilistic restrictions on communica-
tion. Aircraft and watercraft must coordinate under commu-
nication constraints to move patients from aid stations to
hospitals.

joint tasks in environments with degraded, denied, or disrupted
communication. Agents must reason about which actions to take
in light of available communication, the influence actions taken
have on future communication, and future communication’s influ-
ence on future actions. In decentralized systems, information may
be action-gated in costly communication, constrained by channel
capacity in lossy communication, temporally offset in intermittent
or delayed communication, and either deterministic or stochastic
in nature, while semi-decentralized systems generalize all of these
through probabilistic information flow.

We begin by formally defining the semi-decentralization property.
The key insight is that semi-Markov systems for resolving agent
control may be co-opted in semi-decentralized systems for
agent communication. Semi-decentralized systems may simulta-
neously contain a subset of agents that are necessarily decentralized
and a subset of agents that are permissibly centralized. We intro-
duce the semi-decentralized POMDP (SDec-POMDP), which unifies
several existing multiagent models and explicit communication
mechanisms. The SDec-POMDP reveals underlying mechanisms
for memory propagation, selector functions, which we toggle here
but are otherwise inherently present and constant in existing mod-
els. We then detail an exact optimal planning algorithm for solving
SDec-POMDPs and apply to a set of new semi-decentralized bench-
marks and a maritime medical evacuation application.

Contributions

e We formulate the semi-decentralization property by extend-
ing semi-Markov control concepts to communication. Semi-
decentralization is then applied to multiagent POMDPs, form-
ing the SDec-POMDP.



e We prove that the SDec-POMDP unifies the Dec-POMDP,
the MPOMDP, k-steps delayed communication, and the Dec-
POMDP-COM.

e We introduce Recursive Small-Step Semi-Decentralized A*
(RS-SDA”), an exact algorithm for solving semi-decentralized
problems. We evaluate performance in semi-decentralized
variants of four Dec-POMDP benchmarks, then apply to a
complex medical evacuation scenario with joint tasks.

Ultimately, we describe and validate the mechanisms of a novel
yet foundational property and model for multiagent decision mak-
ing in probabilistic communication environments.

2 RELATED WORK

Multiagent Models Centralized planning can occur when agents
freely communicate in reliable networks with no latency or when
individual agents possess full system observability. This allows a
single planner to select joint actions over the global state [22]. A par-
tially observable centralized multiagent system is represented by a

multiagent partially observable Markov decision process (MPOMDP).

MPOMDP planners benefit from conditioning joint actions on joint-
observations but scale poorly and are susceptible to communica-
tion failures. MPOMDP therefore have limited application to many
challenging real-world problems. By contrast, cooperative agents
in decentralized systems can neither communicate explicitly nor
observe the entire system state, and therefore must select own
actions in accordance with local observations [15]. The decentral-
ized POMDP (Dec-POMDP) and MPOMDP share an underlying
model but possess distinct policies and histories. Decentralized
models have been used to support unmanned aerial vehicle for-
mation flight [3], maritime traffic management [30], and wildfire
surveillance [14]. Decentralized systems permit implicit commu-
nication, in which agents transmit information by means of taken
actions and received observations [12]. Explicit communication, by
contrast, endows agents with formalized communications actions.
The state of the art exact optimal algorithm for solving Dec-
POMDPs, recursive small-step multi-agent A* (RS-MAA*) [16], re-
lies on a combination of incremental expansion, clustering, variable-
depth recursive heuristics, and heuristic memoization. We extend
RS-MAA” to semi-decentralized systems.
Communication Schemes The literature features numerous ex-
plicitly modeled communication mechanisms and frameworks, ow-
ing to the sheer diversity of information structures in real-world
problems. Goldman and Zilberstein formalize the decentralized
POMDP with communication (Dec-POMDP-Com), which incor-
porates an alphabet of possible messages and a communication
cost function [9]. The Dec-POMDP-Com provides a basis for costly
communication and generally assumes noise-free instantaneous
broadcasting. Delayed communication occurs when agents learn
the local observation received by others after one or more time
steps [22]. In one-step delayed communication, agents determine
the latest joint action from the joint policy, but are unaware of the
latest joint-observation [20]. In k-steps delayed communication, a
sufficient statistic may be used in place of the past joint policy [21].
Other multiagent models consider noisy [33] or intermittent [34]
communication channels.

In the costly, delayed, noisy, and intermittent communication
cases, the domain environment is orthogonal to the communication
channel, and the actions taken by agents and resulting state do not
affect their future ability to coordinate. Therefore, while communi-
cation directly influences control, control does not in turn directly
influence communication. This distinguishes semi-decentralized
infrastructure from existing communication schemes.
Communication in Reinforcement Learning Our primary con-
tribution is a foundational model that supports both planning and
reinforcement learning in restricted communication environments.
We further present an exact algorithm for semi-decentralized plan-
ning, in which the communication and model dynamics are known
prior to execution [17]. Still, the growing body of multiagent deep
reinforcement learning with communication (Comm-MADRL) re-
search is replete with promising techniques for codifying commu-
nication and defining communication policy. Zhu et al. categorize
Comm-MADRL approaches by communication policy, to include
full communication, partial communication, individual control, and
global control subcategories [35]. We are chiefly concerned with
the individual control literature [13], [29], [28], and seek to learn
optimal control policies in light of potential communication links
between agents. In the sub-field of learning tasks with communica-
tion, policies generated using learning algorithms simultaneously
maximize environmental rewards and determine effective commu-
nication protocols for agents [35]. This parallels recent efforts in
planning to design joint communication and control strategies [31],
which we also do.

3 PRELIMINARIES
3.1 Dec-POMDPs

The decentralized partially observable Markov decision process (Dec-
POMDP) is a stochastic, decentralized multiagent model for sequen-
tial decision-making under partial observability characterized by
tuple (I, S, A, O, T,O,R, ), where:

o ] is a finite set of k agents,

e S is a finite set of states,

e A = x;A; is a finite set of joint actions,

e O = x;0; is a finite set of joint-observations, and

e T:5SXxAxS — [0,1] is a state transition function where
T(s" | s, a) is the probability of being in state s” given joint
action a being performed in state s,

e 0:0 xS x Ais ajoint-observation function where O(6
s’, a) specifies the probability of attaining joint-observation
0’ when joint action a results in state s’, and

e R:Sx A — Risareward function such that R(s, g) is the
immediate reward for performing joint action a in state s.

"

Agents in the decentralized partially observable Markov decision
process (Dec-POMDP) cannot explicitly share information. Each
agent therefore select actions in accordance with a local policy 7;
informed by action observation history h;, where h € ([1;e7 AiO:)*.
We are primarily concerned with deterministic policies, from which
agent actions can be inferred using only observation histories 6y,.
The collection of individual policies is the decentralized policy set
7 : {my, mo,...n). Assume an infinite horizon h = oo and time
discount rate y. The objective is to find a policy set 7 maximizing
expected reward over states and observation histories:



V(s,0n) =E | D y'R(s', 7(6})) | B, 7
t=0

7"« argmax | R(s, a) +yZ Z Pr(s’,0|s,a)V*(s’,0,) | .
acA s’eSo’'e0

3.2 MPOMDPs

The multiagent partially observable Markov decision process (MPOMDP)
is a stochastic, centralized multiagent model for sequential decision-
making under partial observability also characterized by tuple
(I,S,A,O0,T,0,R). MPOMDP agents also lack a complete picture
of the underlying system state, but can share individual actions a;
taken and observations received o;. This permits a sufficient statistic
in the form of a probability distribution over states called a belief
b € A", where n is the number of states and A" is the n — 1 simplex.
We notate the multiagent belief using b, . The belief over successor
states s’ is updated using the set of agent histories & of actions
taken and observation received:

b(s) =10 | 5,@) Y T(s' | 5, @)bels)
SeS
where 7 is a normalizing constant equal to Pr(¢” | bg, @) ™!, and
Pr(o’ | by, a) = Z 0o’ | ¢/,a) Z T(s" | s,a)ba(s). Behefb'

is then generated by applying the behef update equation to all
s’ € S. An initial belief b° is assumed to avoid considering the
Bellman equation for infinite starting beliefs. From the agent per-
spective, reward must be calculated as a function of belief, such
that R(bg, @) = X ses R(s, @)by(s). Inan MPOMDP, we seek a single
joint policy 7y : A™ — A that maps beliefs to actions. The expected
value of b, over an infinite horizon may be written as:

V™ (bg) =B | D" y'R(bL, (b)) | b, = bes, e

We seek a 7, that maximizes expected reward over time, determined
by:

x,, « argmax | R(by, a) +y Z Pr(0” | b, @)V* (b 55) |
acA 5'e0

3.3 Semi-Markov Processes

Definition 1. The semi-Markov property for control admits a distri-
bution over time for state transitions aligned with agent actions.
Definition 2. Sojourn control time 7 is the assignment of general
continuous random variable 7.

O(T <1,5 |s,a) (1)

The semi-Markov decision process (SMDP) [25] is a stochastic single
agent model for sequential decision-making with sojourn system
control. The SMDP is characterized by state transition distribution
Q, which is the probability that the next state transition occurs at
or before 7 and results in successor state s. It is mathematically

convenient to define Q as the product of F(z | s,a)T(s" | s,a,7),
or equivalently F(r | s’,a,s)T (s’ | s, a), where F is the cuamulative
distribution function of 7. The distribution of 7 is conditioned on
the current state s and action taken a and is therefore Markov. The
“semi” in semi-Markov reflects the arbitrary probability distribution
followed by model transitions. When 7 = 0, a new action is taken
to coincide with a decision epoch.

The system natural process time is denoted as 5 € R*, such that
each decision epoch ¢t € N with corresponding sojourn time 7¥ € R*
and state s’ € S occurs at 5!, where 7’ is decision epoch start time
within the natural process. By consequence, natural process time 5
is the sum of sojourn times Y 7* + €, where € is the elapsed time
since 5. Similarly, sojourn time 7/ may be expressed as n'*! — ?,
or the difference in natural process times for subsequent decision
epochs.

4 SEMI-DECENTRALIZATION

Definition 3. The semi-Markov property for communication, or
semi-decentralization, admits a distribution over time for what in-
formation agents can store in memory.

Definition 4. Sojourn communication time t is general continuous
random variable representing the time for an agent to return to an
information-sharing state.

oF <75 |5s,ad) ()

As with SMDPs, we can define Q as the product of F(7’ | s’,a’, 7)
and T(s” | s, a, T), where 7 may be conditioned on the subsequent
joint action set @’. SMDPs have one agent with an implicit condi-
tioned 7 = 0. However, SDec-POMDPs have multiple agents with
varied 7. Thus it is more general with 7’ conditioned on 7. Semi-
decentralized models assume an initial 7%, which can be interpreted
as the communicating state of each agent when = 0. When 7 =
0, information sharing can occur coinciding with a communication
epoch. We assume noise-free instantaneous broadcast communica-
tion resulting in a single communicating agent set as in a blackboard
[7, 8]. Semi-decentralization may however incorporate multiple
distinct communicating sets. Whereas as semi-Markov control sys-
tems toggle model transition dynamics using 7, semi-decentralized
systems toggle updating histories using 7.

5 THE SDEC-POMDP

The semi-decentralized partially observable Markov decision pro-
cess (SDec-POMDP) is a stochastic, semi-decentralized multiagent
model for sequential decision-making under partial observability
characterized by tuple (I, S, A, O, F,T, O, R).

Model The SDec-POMDP model introduces selector functions
f, g, and h to propagate agent memories, actions, and observa-
tions, respectively, to M; and M, through selector sub-nodes con-
ditioned on 7. Figure 2 depicts a SDec-POMDP dynamic decision
network where selector sub-nodes are contained within Zsel =
(Msel AS‘31 Osel) and ZSeI (el Asel Gsely The selector 1nfras—
tructure defines information-sharing configurations and enables
the model to simultaneously maintain sets of centralized and de-
centralized agents. The set compositions change with changes to 7
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Figure 2: The SDec-POMDP dynamic decision network, with
the policy infrastructure on the left and model on the right.
The green backdrop contains the blackboard with memory
M, generated from the histories of communicating agents.
The gray backdrop with plate notation includes the indi-
vidual agent memories M;. Z selector nodes are selectively
toggled by 7 to facilitate memory propagation 7, represented
by dashed lines. Policy i/ edges are represented by dotted
lines. The SDec-POMDP framework is flexible and can be
easily modified to capture the structural and informational
characteristics of different problem domains. For example,
observations received may be conditioned on 7, such that
o(d’|s’,a, 7).

following each state transition. Define M, = ([];e;({@}UA;0:))*,
and M; = (A;0;)* X M. The selector functions follow:

. sely _ Jme if5;=0
g = {2 {020

sely _ Vi,mi ifrl-=0
fomty = {5 S

. sely _ ajEC_l,Vj|Tj=0 if; =0

g(asy = {a; € a,Vi | 7; = 0}

. oi€oVjlri=0 ifr;=0
Vz,h(O?d) {01{ il ifrz~>0

h(o5) = {o; € 6,Vi | 7; = 0}.
Policy For generality, assume an SDec-POMDP policy with de-
terministically stored a;o;, Vi and deterministically selected a, pa-
rameterized by both 7; : M; — A and 7. : M, — A. Memory
propagation n and policy ¢ probability functions follow:

Lvi {32 (7e(me))i i =0
y(a)=13""" lai = m(m) ifr; >0
0, otherwise

(m,) 1, if m,c — mcmselaselésel
MelMme 0, otherwise

; 1,if m) = mym*aslosel
Vi mYy=1{> i e % Y
- (m;) 0, otherwise
Objective Function The SDec-POMDP objective is to identify
the combination of memory propagation and policy functions that
will maximize expected reward. Consider the infinite horizon case:

D VRGN | b°l
t=0

J* = argmax J (i), ¢, 7).
{228
Rewrite in terms of policies 7 and 7, and blackboard and agent
memories m. and m:

](W: Nes f)) =E

(o]
V”“”_[(mc, m)=E Z y'R(st, dt) | O, Me, M, 7c, ﬁ]
=0

= > VT (e, i, )b (s)

seS

V7 (e, 1, s) = Z v(a| me,m) |R(s,a) +yZF(df | 's,a)

acA reT
Z T(s' | s,) Z 0 | s, a)
s’eS e
D7 ne(ml | me, £(1m), g(a), h(3"))

m_eM.

D [nmi 1 me, f(me), g(@), b3 )V (i, 1, s'>l .

m'eM i€l
6 THEORETICAL ANALYSIS

Definition 5. Models Xy and Xy are equivalent if they reduce to
one another via mapping function f, such that Xy < Xy and Xy <
Xp.

Definition 6. Model-policy structures X Yy and XY are equivalent
if they reduce to one another via mapping function g, such that
XYy < XYy andXqu) < XYp.

Definition 7. Model-policy-objective structures Zy and Zy are
equivalent if Vh Vxyy (h,b0) = Vxy, (A, b0).

6.1 MPOMDP
LEmMA 1. SDec-POMDP and MPOMDP models are equivalent.

Proor. Demonstrate that 1. Xppompp < Xspec-PoOMDP and 2.
XsDec-POMDP < XMPOMDP

1. XMPOMDP < XSDec-POMDP o

Letl’=1,8"=S,A’=A, R =R, and O’ = O, where prime nota-
tion indicates the SDec-POMDP for purposes of relating models.
The state transition and observation functions are defined to repro-
duce the MPOMDP dynamics independently of 7, such that T’ (s’ |
s,a,7) =T(s" | s,a) and O’ (0’ | s’,a,7) = O(¢’ | s’,a). Assume a
deterministic communication sojourn time function F, where 7/
for each agent is fixed to one, resulting in complete centralization



at subsequent decision epochs; Vi, F’(Tlf < 1] s,ai1) =0and
F'(z] =1 s,a,7;) = 1. Selector functions therefore return joint ac-
tions and observations at each time-step; Vi, g’ (als.el) =g @ =a
and Vi, b’ (03%) = 1’ (0§ = 6.

2. Xspec-POMDP < XMPOMDP

Let R” = Rand A’ = A. The agent set is extended to include an
additional blackboard agent with an independent memory, so that
I’ = 1 U I.. We assume without loss of generality that |I.| = 1,
and that the communication sojourn time for this agent satisfies
7; = 0 Vi € I.. The state space is augmented to include 7, such that
S’ =S x (R*)™. Similarly, the joint observation space is expanded
to include the sequence of all action-observation pairs,

(j/ = (j X H(A,Ol)*
iel
The transition and observation functions adopt the factored state
space: T' ((s,©') | (s,T),a,a’) = F(' | s',a',©)T(s" | s,a,7) and
O’ (0" | (s', 7)., (s, T),a) = O(0" | s',s,a,/,7) at its most general.
]

LEMMA 2. SDec-POMDP and MPOMDP model-policy structures
are equivalent.

Proor. Demonstrate that 1. X Yarpompp < X Yspec-pompp and 2.
XYspec-poMpP < XYMPOMDP

1. XYmpoMDP < XYspec-POMDP o
Let each memory selector function return the joint memory, such

that Vi, f’(mi?l) = f'(m$!) = m. The update rule for the joint
memory is deterministic and concatenates the prior shared memory
with the complete set of agent actions and observations from the
current time-step, as represented by:

o = 7 (o < | LA = Ao
n'(m') =n.(mg) = {0, otherwise.

Agent actions are selected using a policy over the joint memory:
s | a=m(m)
(@)= {O, otherwise.
2. XYspec-poMDP < XYnMPOMDP

Construct policy ™ (m}) = {(az, ...an), simulating where the action
for agent i is determined to be:

) (me(me)); ifri=0
4= mi(my) ifr; >0

as if each agent draws from the blackboard’s policy when its com-
munication sojourn time is zero and otherwise following a local
policy. The memory update rule is defined to extend the current
memory with the observed joint outcome:

) = 1,if m’ = 1o
nim)= 0, otherwise.

Joint action selection is consistent with the constructed joint policy:

1=\ LVi; a; = ”M(m,)
y'(a) = {O, otherwise. '

]

LEMMA 3. SDec-POMDP and MPOMDP model-policy-objective
structures are equivalent.

Proor. Show VA VX Yapompe (I’_l, by) = VX Yspee-pompp (ﬁ, bo)

Show that the semi-decentralized value function reduces to the
standard value function under the original joint policy. Begin with,

Ve (g, ,5) = ) (@ | me, ) [R(s,@) +y ) F(dZ | 5,)

acA el
[ —
1,me=h 1,all RV L of dr
Z T(s" | s, ) Z 05’ | s, a)
s'es €0
D7 ne(ml | me, £(1), (a), h(3")
m,eM,

1,m;,:mca5d(35d

D0 [ n0mi 1 mi, £(me), g(a), (o) VZ (ml, i, ') .

m'eM i€l

I,Vi,m;:mia?loiel

By construction, each under-braced term evaluates deterministi-
cally: the blackboard’s memory update enforces m/, = m.a*'6,
each agent’s local memory update yields m} = m,-a?‘ﬂol?el, and the
distribution over sojourn times collapse to one. Moreover, since
¥(a| me,m,s) = 1 whenever a = (h), we obtain V77 (me, 1, s) =

V7 (s, h), which results in standard value recursion:

R(s,m(h)) +y Z Z Pr(s’,d" | s, m(h)V™(s', i).

s’eSo’e0

Further observe that m. = m and

Z T(s' | 5,) Z 0 | s,a) = Z Z Pr(s’,d | s, 7(h)).

s’eS Fate) s’eSo’'e0
O

ProposITION 1. The SDec-POMDP and MPOMDP are equivalent.

6.2 Dec-POMDP
LEmMA 4. SDec-POMDP and Dec-POMDP models are equivalent.

Proor. 1. Demonstrate that Xpec-poMDP < XSDec-POMDP and 2.
XSDec-POMDP < XDec-POMDP

1. Xpec-POMDP < XSDec-POMDP } )
Againset’ =1,5 =S, A’ =A R =R,and O’ = 0. Let T’ (s |
s,a,7) = T(s" | s,a) and O’ (0’ | ¢’,a,7’) = O(0’ | s’,a). Action
and observation selection are specified so that for every agent i,
g’(a?d) =g; and h’(o?el) = 0;. Assign to the blackboard memory
the null set, such that g’(aid) = h’(oiel) = @. By the construction
of g’ and ', 7 has no impact and F can be disregarded.
2. XsDec-POMDP < XDec-POMDP
Reference Lemma 1 proof 2, as Xpec-pOMDP = XMPOMDP-

[m}

LEmMMA 5. SDec-POMDP and Dec-POMDP model-policy structures
are equivalent.



Proor. Demonstrate that 1. X Ypec-pomDP < X Yspec-POMDP and
2. XYspec-POMDP < X YDec-POMDP

1. XYpec-POMDP < XYSDec-POMDP

Let each memory selector function return the null set, such that Vi,
f’(miél?l) = f’(m5') = @. The update rule for each agent’s memory
is deterministic and concatenates the prior memory with the set of

individual agent actions and observations from the current time-
step, as represented by:

Lif m; = m,-a?"lo?el

’ ’
m;) = .
n'(m) {0, otherwise
Agent actions are selected using a policy over the agent’s memory:

s L Vi a; = m(m;)
y'(a) = {0, otherwise

By the construction of ¢/, 5/, can be disregarded.

2. XYspec-POMDP < X¥Dec-POMDP
Construct simulated policy (x” )i(m}) = a;, where:

| (me(me)); ifri=0
4=\ m(my) if; >0

as if each agent draws from the blackboard’s policy when its com-
munication sojourn time is zero and otherwise following a local
policy. Each agent’s memory update rule appends the taken action
and observation to the the current memory:

’ " o_ l,ifm; = m;a;o;
n'(m;) = {0, otherwise

Agent action selection is consistent with the constructed policy:

LVi, a; = (xP); (m})
0, otherwise

V-
LEmMMA 6. SDec-POMDP and Dec-POMDP model-policy-objective

structures are equivalent.

Proor. Show V}_l VXYDec-POMDP (fl, b()) = VXYSDec-POMDP (}_l, bo)
The semi-decentralized value function reduces to the decentralized

value function under the original policy set, beginning with:

Vm-,ir( me ,m,s) = Z v(a| me ,m)|R(s,a)+
N ——

acA
M.=& M,=@
1
y Y F(dz|sa) ) T(s'|s,a) ). 0@ |5,a)
zeT s'es 6'e0
| —

1,all RV L of dr

>0 [ntmg 1 mi, f6mey g(a), g(a), h(o'))
m eM i€l 7:';

l,Vi,m;:miaje'o‘;“'

S el | me, gt BN V(g ).
m/ N——
M=o

M=
By construction, each under-braced term evaluates deterministi-
cally: the blackboard’s memory remains m/, = &, each agent’s local
memory update yields m] = m,~a§610§‘°'1, and the distribution over
sojourn times collapses to one. As before, since y/(a | me, m,s) =1
whenever a = 7(h), we obtain V™% (m¢, m,s) = V7 (s, h), which
results in standard value recursion:

R(s, 2(R) +y Y. > Pr(s,d" | s, 2a(R)V(s', )
s’€So6'€0

Again observe that,

Z T(s' | s,) Z 0 | s, a) = Z Z Pr(s,d | s, 2(h)).

s’eS F2=te) s’€eSa’e0
[m}

PRroPosITION 2. The SDec-POMDP and Dec-POMDP are equiva-
lent

Corollary 1. The SDec-POMDP is the same complexity class as a
Dec-POMDP (NEXP-complete)

PRrOPOSITION 3. The SDec-POMDP and k-steps-delayed communi-
cation are equivalent

ProPOSITION 4. The SDec-POMDP and Dec-POMDP-Com are
equivalent

We provide proofs for Propositions 3 and 4 in the technical
appendix.

7 RECURSIVE SMALL-STEP
SEMI-DECENTRALIZED A*

Recursive small-step semi-decentralized A* (RS-SDA*) is an
exact planning algorithm for optimizing expected reward in SDec-
POMDP problems. RS-SDA* modifies RS-MAA* [16] by maintaining
a stage-specific partition of decentralized and centralized joint-
observation histories per probabilistic communication dynamics.
Like RS-MAA*, RS-SDA” relies on incremental expansion of a small-
step search tree, clustering, recursive heuristics, memoization, and
last stage modifications. RS-SDA* generates a fully-specified policy



set 7 € IT using offline planning. A fully-specified policy contains

both fully-specified local policies and, if appropriate for the problem,

a blackboard policy & = (1, ...71n, 1) Where 7; : O" — A; and
7 : O - A. Similarly, ¢ = (@1, ..¢n, ¢c), ¢i : OSP™1 — A; and
@ : 0Sh=1 5 A RS-SDA* is outlined in Algorithm 1.

Small-Step Search Tree We adopt the small-step approach first
introduced by Cazenave for A* and used by Koops et al. in RS-MAA*
to limit search tree outdegree. Small-step search can be used with
both centralized and decentralized components of each policy node,
depicted in Figure 4. As shown in Table 1, small-step search provides
RS-SDA* with mixed component policies, pre-clustering, a lower
bound (complete decentralization) and an upper bound (complete
centralization) on the number of considered nodes per stage t. When
both F(z | s,a) = F(r | @) and given a deterministic policy, we
can consolidate the centralized and decentralized components of
policies and significantly reduce the search tree size. This results
in an RS-SDA* lower bound that is equivalent to RS-MAA* and an
RS-SDA* upper bound that has |Ox | levels per stage and considers
[Ax|™ joint actions per level, where |Oy| is the size of the largest
observation set and |A| is the size of the largest action set.

RS-MAA* RS-SDA* Classical MAA*

(RS-SDA* lower bound) upper bound

levels nodes/stage | levels nodes/stage | levels nodes/stage
t | n|Ox|"  n|Ok|*|A4] [0« 10" AL" | 1 |A*|n|0"l
012 6 1 9 1 9
114 12 4 36 1 81
218 24 16 144 1 6,561
31|16 48 64 576 1 >1E6
4|32 96 256 2,304 1 >1E6
5| 64 192 1,024 9,216 1 >1E6
6| 128 384 4,096 36,864 1 >1E6
7 | 256 768 16,384 147,456 1 >1E6
8 | 512 1536 65,536 589,824 1 >1E6

Table 1: Pre-clustered SDEc-TIGER levels and nodes per stage
by stage for RS-MAA*, RS-SDA", and classical MAA®™. |A,| = 3,
|Ox] =2,and n = 2.

Dynamic Programming We apply backward induction over be-
liefs to rapidly determine the value of centralized policy compo-
nents. This bypasses expensive recursive heuristic calculations for
large portions of the search. For each remaining horizon r and belief
b, we compute V;.(b) and Q, (b, @) and memoize both V and Q under
keys (r,b) and (r, b, a) to enable extensive reuse during A* expan-
sion. Similarly, observation likelihoods P (o | b, @) and posteriors
(bg’ ;) are obtained via a belief update over the model’s transition
and observation tensors, then cached for subsequent calls.
Ordering Observation Histories Any ¢ may contain both decen-
tralized and centralized mappings conditioned on the underlying
state and actions taken. We therefore explore joint-observation
histories (JOH) and local observation histories (LOH) in a predeter-
mined sequence: stage, JOH then LOH, by agent (for LOHs), then
lexicographically. Observe that, for length t, all 6% < 0% and all
0% < 6% Additionally, 6% < 0%, and o 2 oOt if (i < j) or
(i=j /\00[ Zlex 00[)
Clusterlng We 1mplement lossless incremental clustering in de-
centralized policy components based on a probabilistic equivalence
criterion [24]. We similarly cluster centralized policy components
based on the resulting joint belief, or Vs, P(s | 6(1”) =P(s| 6(2”).

Admissible Heuristic As with multiagent A* (MAA®) [32], an
admissible heuristic Q guides a path through a search tree with
partial policies as nodes ¢. A heuristic is admissible if it equals or
over-approximates the true value of the policy node. An open list is
maintained with nodes under consideration. The node in the open
list with the highest heuristic value is expanded and replaced in the
open list by its children. The tree search terminates once a fully-
specified policy with the highest heuristic value is identified. For
each parent node and candidate action, we split each posterior belief
by S; and A; (more generally expressed using F(s, a)) and take a
probability-weighted sum of the exact centralized value on the
communication-dependent posterior and the exact decentralized
value on its complement. Because every constituent (centralized,
decentralized, and their mixture conditioned on communication) is
an exact optimum of a relaxation of the remaining subproblem, the
resulting heuristic never underestimates the achievable return
and is therefore admissible.

RS-SDA* (Offline Planning)
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Figure 3: Illustrating RS-SDA* applied to SDEC-TIGER using
mixed component policies through stage o = 2.

8 EXPERIMENTS

Semi-Decentralized Benchmarks We evaluate RS-SDA” in semi-
decentralized versions of four common Dec-POMDP benchmarks:
DEc-TIGER [18], FIREFIGHTING [23], BoxPUSHING [26], and MARs
[2], and in a new MARITIMEMEDEVAC benchmark. Problem de-
scriptions with illustrations are disclosed in the technical appendix.
All experiments were conducted using an 11th Gen Intel 2.50GHz



Algorithm 1: Recursive Small-Step Semi-Decentralized A*

Input :S; CS synchronization states; A; C A synchronization actions; h
horizon; b initial belief; ¢ initial (partial) policy; d heuristic depth;
M iterations; « threshold; u upper bound
Output:optimal policy ¢+, optimal value v*
function RS-SDA*(h, b, ¢, d, M, &, u,S;, A;):
Q « PRIORITYQUEUE(T)
Q.push(min(¢.heuristics), @)
i—0
while true do
(0,¢) < Q.pop()
if ¢ fully specified then return (v, @)
if v <cotheni «i+1
if i > M or v < u then return (min (o, u), None)
k « current stage of ¢
if oy complete then
(Ddecs Deens Pdecs Peen, Mdec) < TERMINAL(Q” Sz, A7)
if mgec > 0 then
¢ «— CLUSTERPOLICYDEC(¢, Dgec Pec)
if mge. < 1then
¢ — CLUSTERPOLICYCEN(¢, Deen, Peen)

w — EVALUATEPOLICY (¢, k)
¢.heuristics.append (w)
¢.depth « min(k, d)
k—k+1
if oy is final and some centralized child is unfilled then

determine @ for all centralized component LOHs

@’ — ¢ with a* set

w — EVALUATEPOLICY(¢’, k)

Q.push(w,¢")
se if oy is final and one agent’s decentralized children is unfilled
then
determine a; for all agent decentralized component LOHs
@' — ¢ with aj set
w « EVALUATEPOLICY(¢’, k)
if w = o then return (w, ¢’)
Q.push(w, ")
else if some centralized child at o} unfilled then
foreach joint action a € A do
@’ — ¢ with a set
w « EVALUATEPOLICY(¢’, k)
Q-push(w, ¢”)

(o]

end

else if some agent i has an unset decentralized entry at oy then
foreach a; € A do

¢’ — ¢ with a; set

w—EVALUATEPOLICY (¢’, k)

Q-push(w, ¢”)

end
end

for all considered h. For SDEC-TIGER, the semi-decentralization
substantially improves over the lower bound but remains below the
centralized upper bound. In MARITIMEMEDEVAC, the three regimes
are nearly indistinguishable at moderate horizons (H = 5, 6), but
at H = 7 centralized reaches 6.62 while semi-decentralized attains
4.54, clearly outperforming full decentralization (3.27). At H = 7,
the semi-decentralized policy recovers about 69% of the central-
ized value. These results indicate that semi-decentralization and
RS-SDA* preserve much of the benefit of centralized coordination
while staying tractable, with occasional slowdowns or timeouts on
problem instances where lossless clustering is largely ineffective.

lower bound our approach upper bound
decentralized ~ semi-decentralized centralized
RS-MAA* RS-SDA* VI
h | value time | value time | value time
SDEc-TIGER
8 12.21726 2| 27.21518 <1 | 47.71696 <1
9 15.57244 19 | 30.90457 <1 | 53.47353 <1
10 | 15.18438 TO | 34.72370 <1 | 60.50990 <1
SDEC-FIREFIGHTING (nj, = 3,n¢ = 3)
3 | -5.73697 <1 | -5.72415 <1 | -5.72285 <1
4 | -6.57883 8 | -6.56419 7 | -6.51859 7
5 | -7.06987 89 | -6.98102 94 | -6.98069 94
SDEc-BoxPusHING
3 | 66.08100 <1 | 66.81000 <1 | 66.81000 <1
4 | 98.59613 24 | 99.55630 <1 | 99.55630 <1
5 107.72985 MO | 109.09251 1| 109.09251 1
SDEc-MaRs (Right Band Rendezvous)
4 10.18080 3] 10.18080 <1 | 10.87020 <1
5 13.26654 9 | 14.29038 <1 | 14.38556 1
6 18.62317 19 | 20.06430 2| 20.06706 3
SDEC-MARSs (Survey Site Beacons)
4 10.18080 3] 10.54620 <1 | 10.87020 <1
5 13.26654 9 | 13.26654 <1 | 14.38556 1
6 18.62317 19 | 18.62317 143 | 20.06706 3
SDEc-MaRs (Drill Site Beacons)
4 10.18080 3] 10.87020 <1 10.87020 <1
5 13.26654 9 | 14.38556 <1 | 14.38556 1
6 18.62317 19 | 20.06168 2| 20.06706 3
MARITIMEMEDEVAC
5 3.46017 <1 | 3.48345 1] 3.49629 <1
6 3.18348 <1 | 3.19807 28 | 3.19945 <1
7 | 3.26710 2| 6.36301 37 | 6.61819 1
8 | 8.03228 260 | 10.61275 660 | 10.88244 1

i7 CPU, with timeout occurring at 20 minutes and memory out at
16 GB. We adopt hyper-parameters M = 200, d = 3, and a = 0.2 for
all experiments. A link to our code repository is provided in the
technical appendix to support reproducibility.

Results As shown in Table 2 and Figure 4, RS-SDA” is competitive
with the centralized upper bound across most semi-decentralized
benchmarks and MARITIMEMEDEVAC. The modified benchmarks
demonstrate how model dynamics influence the value of infor-
mation in multi-agent systems. SDEc-FIREFIGHTING exemplifies
problems where centralization benefits are negligible, and the opti-
mal RS-SDA* solution equals the optimal RS-MAA* solution for all
considered h. By contrast, SDEc-Box exemplifies problems where
partial centralization results in complete information sharing, and
the optimal RS-SDA” solution equals the fully centralized optimum

Table 2: RS-MAA" offline planning and RS-SDA" offline
planning/online search performance on semi-decentralized
benchmarks and the Maritime MEDEVAC problem. TO and
MO denote timeout (>1200s) and memout (>16GB).

9 CONCLUSION

We present a foundational framework for multiagent decision mak-
ing under probabilistic communication. We formalize the semi- de-
centralization property and introduce the SDec-POMDP, which uni-
fies the Dec-POMDP, MPOMDP, and several communication mecha-
nisms with delay, loss, or cost. A secondary contribution is RS-SDA”,
an admissible heuristic search algorithm for semi-decentralized sys-
tems with performance comparable to the state-of-the-art, and
semi-decentralized versions of four standard benchmarks and a



Exact Optimal Values for MaritimeMEDEVAC

=O= Centralized
== Decentralized
== Semi-decentralized

Optimal Value
ok N W s U O

Horizon (steps)

Figure 4: MARITIMEMEDEVAC environment representation
and centralized/decentralized/semi-decentralized optimal
policy values for horizons one through seven.

new medical evacuation scenario. Taken together, SDec-POMDP
and RS-SDA” provide a principled basis for studying and exploiting
probabilistic communication in cooperative teams. Future work
includes exploiting interleaving offline planning and online search
to improve approximate RS-SDA* performance and investigating
systems with non-stationary sojourn time distributions.
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A APPENDIX

A.1 k-Steps Delayed Communication

k-steps delayed communication [19], [21], [23] is a model for delayed
broadcast communication where each agent receives the complete
joint history from ¢ — k at t. This enables k-steps delayed com-
munication to generate a joint belief b =k on which to conduct
subsequent decentralized planning. We formally define the agent
histories under k-steps delayed communication, below:

H} = (A;0)"

o ® H! if j=1i
hi € Hix = U l_[ {Hl‘_na"{o’ L=K otherwise

LEMMA 7. SDec-POMDP and k-steps delayed communication mod-
els are equivalent.

Proor. Demonstrate that 1. Xk-steps Delayed < XSDec-POMDP and
2. XsDec-POMDP < X-steps Delayed

1 Xk—steps Delayed < XSDec-POMDP

LetI’ =1,58 =S, A = A, R =R, and O’ = O. The state transi-
tion and communication sojourn time functions are independent
of 7 such that T’(s” | s,a,7) = T(s’ | s,a) and O’ (0" | ¢’,a,7’) =
0O(d’ | s’, a). Again assume a deterministic communication sojourn
time function F, where 7’ for each agent is fixed to one, result-
ing in complete centralization at subsequent decision epochs; Vi,
F'(Tlf < 1] s,ai1)=0and FI(T; = 1| s,aj, 1) = 1. Blackboard
selector functions return joint actions and observations at each time-
step; ¢/ (a5€)) = @ and I (05°) = 6. Agent selector functions return
agent actions and observations at each time-step; Vi, g’ (a?el) =aq;
and Vi, h’(o?el) =0;.

2. XsDec-POMDP < Xk—steps Delayed
Let k = 0. See proof of Lemma 4 for construction of a SDec-POMDP

model within a Dec-POMDP. |

LEMMA 8. SDec-POMDP and k-steps delayed model-policy struc-
tures are equivalent.

Proor. Demonstrate that X Y steps Delayed < X YsDec-POMDP and
2. XYspec-POMDP < XYk-steps Delayed

LX Yk-steps Delayed < XYspec-POMDP
For any object X carrying a time index, X|; = denotes the same
object with indices > r disabled/ignored. Let each agent memory
selector function return the blackboard memory at t — k, such that
vi, 7 (mifl) = m£|0: /- The blackboard memory selector function
returns the latest joint agent memory set. The update rule for each
agent’s memory is deterministic and concatenates the prior memory
with the set of individual agent actions and observations from the
current time-step:

: r — o msel sel sel
n (m) = {1,1fmi = m;mS; ai® o]

0, otherwise.

Agent actions are selected using a policy over the agent’s memory:

1=\ I;Vi’ a = ”i(mi)
y'(a) = {O, otherwise.
Finally, the update rule for the blackboard memory is deterministic

and concatenates the prior shared memory with the complete set
of agent actions and observations from the current time-step:

=sel =sel

i _ JLifm) =ma*®o
ne(me) = {0, otherwise.

2. XY¥sDec-POMDP < XYk-steps Delayed
Let k = 0. See proof of Lemma 5 for construction of a SDec-POMDP

model-policy structure within a Dec-POMDP.
m]

LEMMA 9. SDec-POMDP and k-steps delayed model-policy-objective
structures are equivalent.

The semi-decentralized value function reduces to the k-steps de-
layed value function under the original policy set, beginning with:

PrOOF. Show VE VXYk-steps Delayed (Fl’ bO) = VXYSI)ec—POMI)P (]:l’ bO)

V7 (e, 1, s) = Z y(a| me,m)|R(s,a) + yZF(df |'s,a)

acA teT
1,me=h 1,all RV L of dr
Z T(s' | s,) Z 0 | s, a)
s'eS €0
D7 nelml | me, (), g(a), h(3'))

m,eM.

l,m’E:mcanoSd

S [T n0mi 1 ma fme). (@) h(o') Vo (i)

m'eM i€l

sel sel
i 0

1,Vim;=m;a
By construction, each under-braced term evaluates deterministi-
cally: the blackboard’s memory update enforces m/, = m.a*'5%¢!,
each agent’s local memory update yields m} = mia?elo?el, and the
distribution over communication sojourn times collapse to one.
Moreover, since y(a | me,m,s) = 1 whenever a = ﬁ(l’:l), we ob-

tain V77 (mg, m, s) = V7 (s, h), which results in standard value
recursion:

R(s,#(R)+y D D Pr(s’,5 | s, #(A)V* (s, h)

s’eSo’'€0
Observe that:
Z T(s' | s,) Z 0 | s, a) = Z Z Pr(s’,0 | s, 7(h))
s’eS F2=te) s’€Sa’e0

O

ProPosITION 5. The SDec-POMDP and k-steps delayed are equiv-
alent.



A.2 Dec-POMDP-Com

The Dec-POMDP-Com [9] extends explicit communication to the
Dec-POMDP by including an alphabet of possible messages ¥ and
communication cost function Cs. For a specified cost, each agent
takes a communication action after their control action, which un-
der the instantaneous broadcast communication assumption results
in all other agents receiving an additional observation. Unlike the
SDec-POMDP, agents in a Dec-POMDP-Com are never entirely
restricted from communication. The algorithm designer may cen-
tralize the agents in a Dec-POMDP-Com (for cost) at will.

LEmMMA 10. SDec-POMDP and Dec-POMDP-Com models are equiv-
alent.

Proor. Demonstrate that Xpec-POMDP-Com < XSDec-POMDP and
2. XsDec-POMDP < XDec-POMDP-Com

1. XDec-POMDP-Com < XSDec-POMDP

Reference Xpec-POMDP-Com <p XDec-POMDP [27] and Xpec-POMDP
< Xspec-pOMDP in proof of Lemma 4.

2. XsDec-POMDP < XDec-POMDP-Com
Reference Xspec-POMDP < XDec-pOMDP in proof of Lemma 4 and

XDec-POMDP <p XDec-POMDP-Com [27]-
O

LEMMA 11. SDec-POMDP and Dec-POMDP-Com model-policy
structures are equivalent.

Proor. Demonstrate that X Ypec-poOMDP-Com < X YSDec-POMDP
and 2. XYspec-POMDP < X YDec-POMDP-Com

1. XYpec-POMDP-Com < XYSDec-POMDP
Reference X Ypec-POMDP-Com <p X YDec-POMDP [27] and X Ypec-pomDP
< XYspec-poMmDP in proof of Lemma 5.

2. XYspec-POMDP < X ¥Dec-POMDP-Com
Reference XYspec-POMDP < X YDec-pOMDP in proof of Lemma 5 and

XYDec-POMDP <p X YDec-POMDP-Com [27]-
O

LEMMA 12. SDec-POMDP and Dec-POMDP-Com model-policy-
objective structures are equivalent.

Proor. Demonstrate that VE VX YDec-POMDP-Com (}—l: bO) =
VX Yspec-ronpe (1 o)

Reference Vh VX Yoee rompe (h,bg) = VX Yspee poMpe (h, bo) in proof of
Lemma 6.
O

ProrosiTION 6. The SDec-POMDP and Dec-POMDP-Com are
equivalent.

A.3 Semi-Decentralized Benchmarks

A.3.1 SDEec-TiGer. Consider the following semi-decentralized vari-
ation on the DEc-TIGER benchmark [18], depicted in Figure 5. SDEc-
TIGER has 2 states, 3 actions, and 2 observations. Two cooperative
agents stand behind two doors. One door leads to a room containing

a tiger while the other leads to a room containing treasure. Each
agent has three actions: opening the left door OL, opening the right
door OR, and listening L. The problem reward function is fully
described in table 3. The problem resets when any door is opened,;
the probability that the tiger is behind the left door TL and that the
tiger is behind the right door TR both become 0.5. Joint actions that
do not open doors do not affect the underlying state. Agents have
an 75% chance of accurately communicating their action observa-
tion histories if they both listen. After taking an action, each agent
receives one of two observations, hear tiger on left HL or hear tiger
on right HR. Listening to either door gives an 0.75 probability of
returning the correct observation. Opening a door and resetting the
problem results in both agents receiving either observation with a
0.5 probability. If one agent opens a door while the other listens,
the listening agent will not know the problem has been reset.

Table 3: SDEc-TIGER Rewards (TL, TR)

a | oL OR L

OL | (-50, 20) (-100, -100)  (-101, 9)
OR | (-100,-100) (20,-50) ~ (9,-101)
L | (-101,9) (9,-101)  (-2,-2)
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Figure 5: Illustration of four of nine possible joint actions
for SDEC-TIGER. Agents communicate their observation his-
tories with some probability when they listen to the same
door (in green).

A.3.2  SDEc-FIREFIGHTING. Consider the following semi-decentralized
variation on the FIREFIGHTING benchmark [23], depicted in Figure
6. SDECBOXPUSHING (nf = 3, np, = 3) has 432 states, 3 actions, and
2 observations. 2 agents are tasked with addressing a line of ny,
houses, each with fire severity status f in range [0, ns] initially
sampled from a uniform distribution. Each agent selects a house to
suppress at each time-step. Single agent suppression decrements
f by 1 with probability 1.0 if all adjacent houses have f = 0 or
with probability 0.6 otherwise. Dual agent suppression resets f
to 0. Agents only communicate their observation histories if they
suppress the same house. A house without a firefighter present
increments its f by 1 with probability 0.8 if an adjacent house has
f > 0 or with probability 0.4 if all adjacent houses have f = 0. A
house with f = 0 will catch fire (increment f by 1) with probabil-
ity 0.8 if an adjacent house has f > 0. Each agent observes their
selected house to be on fire or not with probability 0.2 if f = 0,
probability 0.5 if f = 1, and probability 0.8 if f > 2. The cooperative
agent team is rewarded the summation of — f across all n, following
action selection.
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Figure 6: Illustration of two of nine joint actions in SDEc-
FIREFIGHTING (n, = 3,n7 = 4). Agents communicate when
they suppress the same house, shown in green.

A.3.3  SDec-BoxPusHING. Consider the following semi-decentralized
variation on the BoxPusHING benchmark [26], depicted in Figure 7.
SDEcBoxPuUsHING has 100 states, 4 actions, and 5 observations. n
agents cooperate to push small and large boxes into an established
goal area. Each agent can choose to rotate left, rotate right, move
forward, or remain in place. Rotation and movement actions are
successful with a 0.9 probability, otherwise the agent remains in
place. Forward movement while facing a box will cause the box
to translate one unit in the direction of movement, if permissible.
A single agent can push a small box but two agents must act in
tandem to push a large box. Movement into a wall, or into a large
box with one agent, will result in remaining in place. Each agent
correctly observes what is in front of them: a wall, a small box, a
large box, an empty space, or another agent. Agents share their
observation histories when simultaneously occupying one or more
established communication grid squares. Agents receive a —0.1n
reward after each time-step, a —5 reward for each agent that moves
into a wall, a +10 reward for each small box pushed into the goal
area, and a +100 reward for each large box pushed into the goal
area. The problem resets as soon as any box reaches the goal state.
We adopt the environment configuration depicted in Figure 7.

Figure 7: Illustration of the SDEc-BoxPUSHING environment.
Agents communicate when they are both in the green square.

A.3.4 SDEec-MARs. Consider the following semi-decentralized vari-
ation on the MARs benchmark [2], depicted in Figure 8. SDEC-MARS
has 256 states, 6 actions, and 8 observations. Each of two agents can
choose to move north, south, east, and west in a 2x2 grid, or con-
duct an experiment of choice (drilling or sampling) in their current
location. Two grid squares are intended to be sampled by one agent
and the other two grid squares require that both agents drill simul-
taneously. Each agent accurately observes their location in the 2x2
grid and whether an experiment has already been performed there.

Agents share their observation histories while simultaneously oc-
cupying a designated communication grid square. The problem
resets once an experiment is performed in all four grid squares. The
cooperative agent team receives a large positive reward for drilling
a drill site, a small positive reward for sampling a sample site, a
large negative reward for drilling a sample site, and a small positive
reward for sampling a drill site. Attempting a second experiment
on the same site incurs a small negative reward.
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Figure 8: Illustration of the SDEc-MARSs environment. Agents
in (a), the survey site beacon scenario, can communicate
when co-located or adjacent to the same not yet surveyed
survey site. Agents in (b), the right band rendezvous scenario,
communicate alongside the right side of the grid when at
least one site remains incomplete. Agents in (c), the drill
site beacon scenario, can communicate when co-located or
adjacent to the same not yet drilled drill site.
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Figure 9: Illustration of the MARITIMEMEDEVAC environ-
ment. Agents communicate when they are positioned adja-
cent to patient pickup and drop-off sites.

A.3.5 MarRTIMEMEDEVAC. We introduce a new semi-decentralized
MEDEVAC benchmark involving a 4 X 4 gridworld archipelago,
depicted in Figure 9. MARITIMEMEDEVAC has 512 states, 3 ac-
tions, and 2 observations. Two agents, a medical aircraft and a
transport ship, must retrieve a patient at (1, 1) and deliver them
to a hospital at (3,3). At each time-step, agents selects one of
WAIT, ADVANCE, EXCHANGE. ADVANCE moves one cell toward
the current target (patient if carry = 0, else hospital), succeeding
independently with probability 0.95 for the aircraft and 0.85 for
the boat. WAIT leaves the agent position unchanged. EXCHANGE
attempts a joint pickup/drop that succeeds with probability 0.95
when both agents are at the corresponding site (toggling carry).
Each agent receives a binary observation indicating whether it is at-
target (patient if carry = 0, hospital if carry = 1) or not. The team



incurs -0.3 per step, issuing EXCHANGE away from {(1, 1), (3,3)}
costs -1.0, a solo pickup or solo drop-off incurs -6.0, and joint pickup
or drop-off grants +5.0 and +12.0 respectively. Agents share obser-
vation histories in a subset of “one-arrived, one-not” states: at the
patient when the aircraft is at (1, 1) and the boat remains at (1, 0)
with (carry = 0), and at the hospital when one agent is at (3, 3) and

the other at (3, 2) with (carry = 1) (both permutations). Agents
cannot communicate in any other states.

A.4 Code

Results for semi-decentralized benchmarks may be reproduced at:
https://github.com/csapidus/RSSDA.git
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